

MONITORING YEAR 2 ANNUAL REPORT

Final

VILE CREEK MITIGATION SITE

Alleghany County, NC DEQ Contract No. 5999 DMS Project No. 96582

DWR No. 14-0869 USACE Action ID 2014-01585

Data Collection Period: April – November 2018

Submission Date: December 13, 2018

PREPARED FOR:

NC Department of Environmental Quality Division of Mitigation Services 1652 Mail Service Center Raleigh, NC 27699-1652 Mitigation Project Name **Vile Creek Mitigation Site**

DMS ID 96582 River Basin New **Cataloging Unit** 05050001 County Alleghany Date Project Instituted 6/24/2014 **Date Prepared** 5/22/2018

USACE Action ID NCDWR Permit No

2014-01585 2014-0869

			Strea	m Credits			Wetland Credits							
Credit Release Milestone	Scheduled Releases	Warm	Cool	Cold	Anticipated Release Year	Release Date	Scheduled Releases	Riparian Riverine	Riparian Non- riverine	Non-riparian	oooaa.oa	Coastal	Anticipated	Actual Release Date
Potential Credits (Mitigation Plan)	(Stream)			5,146.000	(Stream)		(Forested)		5.820		Releases (Coastal)			(Wetland)
Potential Credits (As-Built Survey)	(Stream)			5,053.014	(01.00)				5.703		(Godolai)		(Ironana)	(Fromuna)
1 (Site Establishment)	N/A				N/A	N/A	N/A				N/A		N/A	N/A
2 (Year 0 / As-Built)	30%			1,515.904	2017	7/25/2017	30%		1.711		30%		2017	7/25/2017
3 (Year 1 Monitoring)	10%			505.301	2018	4/25/2018	10%		0.570		10%		2018	4/25/2018
4 (Year 2 Monitoring)	10%				2019		10%				15%		2019	
5 (Year 3 Monitoring)	10%				2020		10%				20%		2020	
6 (Year 4 Monitoring)	5%				2021		10%				10%		2021	
7 (Year 5 Monitoring)	10%				2022		10%				15%		2022	
8 (Year 6 Monitoring)	5%				2023		10%				N/A		2023	
9 (Year 7 Monitoring)	10%				2024		10%				N/A		2024	
Stream Bankfull Standard	10%						N/A				N/A			
Total Credits Released to Date				2,021.205					2.281					

DEBITS (released credits only) 1.00917 1.72973 2.57596 1.12222 Ratios Mars Coastal I As-Built Amounts (feet and acres) 2,970.000 1,088.000 3,815.000 6.400 As-Built Amounts (mitigation credits) 1,481.001 2,943.013 629.000 5.703 40% 40% 40% 40% Percentage Released Released Amounts (feet / acres) 1,188.000 435.200 1,526.000 2.560 Released Amounts (credits) 251.600 592.401 1,177.205 2.281 NCDWR Permit USACE Action ID Project Name NCDOT TIP R-3101 - US 21 2013-0777 2012-01963 Improvements 190.230 NCDOT R-2915A - US 221 206.540 0.660 2014-0762 2012-00882 Widening NCDOT R-2915B - US 221 2014-0762 2012-00882 Widening 494.230 998.340 326.400 0.965 NCDOT R-2915D - US 221 2014-0762 2012-00882 Widening 0.294 NCDOT R-2915A - US 221 2014-0762 2012-00882 Widening 154.764 NCDOT TIP R-0529BA / BB 1997-0616 1997-07161 BD 306.540 NCDOT R-2915D - US 221 2014-0762 2012-00882 Widening 297.000 108.800 66.356 0.641 Remaining Amounts (feet / acres) 0.000 0.000 0.000 0.000 0.000 0.000 Remaining Amounts (credits) 0.000 0.000

Contingencies (if any): None

Signature of Wilmington District Official Approving Credit Release

- 2 For NCDMS projects, the second credit release milestone occurs automatically when the as-built report (baseline monitoring report) has been made available to the NCIRT by posting it to the NCDMS Portal, provided the following criteria have been met:
 - 1) Approval of the final Mitigation Plan
 - 2) Recordation of the preservation mechanism, as well as a title opinion acceptable to the USACE covering the property
 - 3) Completion of all physical and biological improvements to the mitigation site pursuant to the mitigation plan
 - 4) Reciept of necessary DA permit authorization or written DA approval for porjects where DA permit issuance is not required
- 3 A 10% reserve of credits is to be held back until the bankfull event performance standard has been met

PREPARED BY:

1430 South Mint Street, Suite 104 Charlotte, NC 28203

> Phone: 704.332.7754 Fax: 704.332.3306

December 13, 2018

Mr. Harry Tsomides NC Department of Environmental Quality Division of Mitigation Services 5 Ravenscroft Dr., Suite 102 Asheville, NC 28801

RE: Response to MY2 Draft Report Comments

Vile Creek Mitigation Project

DMS Project # 96582 Contract Number 5999

New River Basin - #CU# 05050001 - Alleghany County, North Carolina

Dear Mr. Tsomides:

Wildlands Engineering, Inc. (Wildlands) has reviewed the Division of Mitigation Services (DMS) comments from the Draft Monitoring Year 3 report for the Henry Fork Mitigation Project. The following Wildlands responses to DMS's report comments are noted in italics lettering.

DMS comment; Executive Summary - While the detail is provided in Section 1.2.5, given the significance of the two MY02 fall storm events (Hurricane Florence and Tropical Storm Michael) in this region, it would be helpful to note in the ES that the site was evaluated following these events and that the results are in the narrative.

Wildlands response; The requested verbiage was included in the Executive Summary.

DMS comment; Section 1.2.2 – It is noted that a geomorphically significant event is still pending. Does Wildlands feel that Hurricane Florence and Tropical Storm Michael were not geomorphically significant events?

Wildlands response; Wildlands agrees that Hurricane Florence and Tropical Storm Michael exceeded the geomorphic significant discharge (Qgs) for the site. However, Qgs documentation following these storm events was not completed due to the timing of the storm events. Wildlands is optimistic that it will be feasible to document at least two Qgs events within the remainder of the five-year monitoring period.

DMS comment; Section 1.3 – It is noted that the Site has partially met the stream hydrologic success criteria; please describe what the criteria are.

Wildlands response; Section 1.3 has been updated to describe the stream success criteria that has been met. "Multiple bankfull events were documented on both Vile Creek and UT1; therefore, the Site has partially met the stream hydrological success criteria of two or more bankfull events occurring in separate years within the restoration and enhancement reaches."

DMS comment; It would be helpful to show the station numbers on the CCPVs so the reader can match the narrative with the maps.

Wildlands response; Wildlands has updated the CCPV maps to include the longitudinal stationing.

DMS comment; Visual Assessment tables – Localized areas of scour /erosion are noted in Section 1.2.5; however, the visual assessment tables on some of these reaches indicate 100% performance. In addition, the "Totals" section for 'Bank' does not seem to be summed accurately in some instances. Please reexamine the visual assessment tables and provide an up-to-date and accurate depiction of areas of scour/erosion, undercut banks, etc. and totals following the fall 2018 major storm events.

Wildlands response; Wildlands has updated the CCPVs to remove the stream areas of concern that do not meet the mapping threshold. The visual assessment tables (5a-5e) were also updated to reflect an accurate depiction of scour/erosion performance. Section 1.2.5 was updated to clarify the areas are under the mapping threshold and correct station numbers.

DMS comment; As Wildlands has done in the past, please include a response to the comment letter and how/where the comments were addressed. Please insert this letter directly behind the cover page in the final deliverables. The IRT has requested that we include this letter with the final deliverables. The response letter will need to be included with all future monitoring deliverables.

Wildlands response; Wildlands has included this response letter as part of the final report deliverable to DMS and the IRT.

Enclosed please find four (4) hard copies and one (1) electronic copy on CD of the Final Monitoring Report. Please contact me at 704-332-7754 x110 if you have any questions.

Sincerely,

Kirsten Y. Gimbert Environmental Scientist

Kirsten Y. Sembert

kgimbert@wildlandseng.com

EXECUTIVE SUMMARY

Wildlands Engineering, Inc. (Wildlands) completed a full-delivery stream and wetland mitigation project at the Vile Creek Mitigation Site (Site) for the North Carolina Division of Mitigation Services (DMS) to restore and enhance a total of 8,056 linear feet (LF) of perennial and intermittent stream and to restore 6.40 acres of riparian wetlands in Alleghany County, NC. The Site is expected to generate 5,053 stream mitigation units (SMUs), and 5.70 riparian wetland mitigation units (WMUs) for the New River Basin (Table 1). The Site is located approximately one mile east of the Town of Sparta, NC in the New River Basin; eight-digit Cataloging Unit (CU) 05050001 and the 14-digit Hydrologic Unit Code (HUC) 05050001030020 (Figure 1). The Site streams consist of Vile Creek and five unnamed tributaries (UT) to Vile Creek including UT1, UT1b, UT1c, UT2, UT3, and a portion of the Little River (Figure 2). Vile Creek flows into the Little River near the downstream site boundary. The land adjacent to the streams and wetlands is primarily maintained cattle pasture and forest.

The Site is within a Targeted Local Watershed (TLW) identified in the New River Basin Restoration Priority (RBRP) plan (NCDENR, 2009). The Site is also located within the planning area for the Little River & Brush Creek Local Watershed Plan (LWP). The LWP identified the following stressors to watershed function: deforested buffers that are heavily grazed, livestock access to the streams, heavily eroded stream banks, land-disturbing activities on steep slopes, non-point source pollution from the Town of Sparta and surrounding areas, and drained and deforested wetland areas (NCDENR, 2007).

The project goals defined in the mitigation plan (Wildlands, 2016) were established with careful consideration of goals and objectives that were described in the RBRP and to meet DMS mitigation needs while maximizing the ecological and water quality uplift with the watershed. The project goals established in the mitigation plan focused on permanent protection for the site, re-establishing natural hydrology and vegetation, reducing water quality stressors, and enhancing terrestrial and aquatic habitat.

The Site construction and as-built survey were completed in February 2017. Monitoring Year (MY) 2 assessments and site visits were completed between April and November 2018 to assess the conditions of the project.

Overall, the Site has met the required stream, vegetation, and hydrology success criteria for MY2. All restored and enhanced streams are stable and functioning as designed. Following the fall storm events (Hurricane Florence and Tropical Storm Michael), site conditions were evaluated, and the results are discussed later. During MY2, two bankfull events occurred on Vile Creek Reach 2 and one bankfull event occurred on UT1 Reach 2. UT1 pebble count reflected coarser material in both reaches. The overall average stem density for the Site is 502 stems per acre and is therefore on track to meet the MY3 requirement of 320 stems per acre for trees and 160 plants per acres for shrubs. All ten gages in the wetland re-establishment and rehabilitation areas are meeting or exceeding hydrology success criteria

VILE CREEK MITIGATION SITE

Monitoring Year 2 Annual Report

Section 1: PROJECT OVERVIEW	1-1
1.1 Project Goals and Objectives	1-1
1.2 Monitoring Year 2 Data Assessment	1-2
1.2.1 Stream Assessment	1-2
1.2.2 Stream Hydrology Assessment	
1.2.3 Vegetative Assessment	1-2
1.2.4 Wetland Assessment	1-3
1.2.5 Areas of Concern/Adaptive Management Plan	1-3
1.3 Monitoring Year 2 Summary	1-4
Section 2: METHODOLOGY	2-1

APPENDICES	
Appendix 1	Figures and Tables
Figure 1	Project Vicinity Map
Figure 2	Project Component Map
Table 1	Project Components and Mitigation Credits
Table 2	Project Activity and Reporting History
Table 3	Project Contact Table
Table 4	Project Information and Attributes
Appendix 2	Visual Assessment Data
Figure 3.0-3.4	Integrated Current Condition Plan View
Table 5a-d	Visual Stream Morphology Stability Assessment Table
Table 6	Vegetation Condition Assessment Table
	Stream Photographs
	Vegetation Photographs
	Bog Vegetation Photographs
Appendix 3	Vegetation Plot Data
Table 7	Vegetation Plot Criteria Attainment
Table 8	CVS Vegetation Plot Metadata
Table 9a-b	Planted and Total Stems and Planted Herbaceous Cover (Bog Cells)
Appendix 4	Morphological Summary Data and Plots
Table 10a-b	Baseline Stream Data Summary
Table 11	Morphology and Hydraulic Summary (Dimensional Parameters – Cross Section)
Table 12a-b	Monitoring Data – Stream Reach Data Summary
	Cross-Section Plots
	Reachwide and Cross-section Pebble Count Plots
Appendix 5	Hydrology Summary Data and Plots
Table 13	Verification of Bankfull Events
Table 14	Wetland Gage Attainment Summary
	Groundwater Gage Plots & Stream Gage Plots
	Monthly Rainfall Data

Section 1: PROJECT OVERVIEW

The Site is located approximately one mile east of the Town Sparta in eastern Alleghany County, NC. The project is within the New River Basin; eight-digit CU 05050001 and the 14-digit HUC 05050001030020 (Figure 1). Located in the Blue Ridge Belt of the Blue Ridge Province (USGS, 1998), the project watershed primarily includes managed herbaceous, mixed upland hardwoods, and other forested land. The drainage area for the project streams range from 0.01 square miles to 2.69 square miles.

The project streams consist of Vile Creek and five unnamed tributaries (UT) to Vile Creek including UT1, UT1b, UT1c, UT2, UT3, and a portion of the Little River. Stream restoration reaches include Vile Creek (Reaches 1 and 2) and UT1 Reach 2, which together comprising 3,047 linear feet (LF) of perennial stream channel. Stream enhancements reaches include UT1 Reach 1, UT1b, UT1c, UT2, UT3, and a portion of Little River, totaling 5,009 LF. Wetland components include 3.02 acres of wetland rehabilitation and 3.38 acres of wetland re-establishment.

Construction activities were completed by Land Mechanic Designs, Inc. in February 2017. Planting and seeding activities were completed by Bruton Natural Systems, Inc. in February 2017. The land required for construction, management, and stewardship of the mitigation project included portions of five parcels resulting in 25.04 acres of the conservation easement. The project is expected to generate 5,053 stream mitigation units (SMUs) and 5.70 riparian wetland mitigation units (WMUs). Annual monitoring will be conducted for seven years with close-out anticipated to commence in 2024 given the success criteria are met.

1.1 Project Goals and Objectives

The Site is intended to provide numerous ecological benefits within the New River Basin. While many of these benefits are limited to the Vile Creek project area; others, such as pollutant removal, reduced sediment loading, and improved aquatic and terrestrial habitat, have farther-reaching effects. Expected improvements to water quality and ecological processes are outlined below as project goals and objectives. These project goals were established with careful consideration of goals and objectives that were described in the RBRP and to address stressors identified in the LWP.

The following project specific goals established in the mitigation plan (Wildlands, 2016) include:

- Reduce pollutant inputs to streams including fecal coliform, nitrogen, and phosphorous;
- Reduce inputs of sediment into streams from eroding stream banks;
- Return a network of streams to a stable form that is capable of supporting hydrologic, biologic, and water quality functions;
- Improve aquatic communities in project streams and provide improved habitat for trout migrating from Little River into Vile Creek. Note: Presence of aquatic organisms and trout will not be tied to project success criteria;
- Raise local groundwater elevations and allow for more frequent overbank flows to provide a source of hydration for floodplain wetlands. Reduce shear stress on channels during larger flow events;
- Restore wetland hydrology, soils, and plant communities;
- Improve and expand Southern Appalachian bog habitat to support bog species such as bog turtles. Note: Presence of bog turtles will not be tied to project success criteria;
- Create and improve riparian and wetland habitats by planting native vegetation. Provide a canopy to shade streams and reduce thermal loadings. Create a source of woody inputs for

- streams. Reduce flood flow velocities on floodplain and improve long-term lateral stability of streams. Improve bog habitat by planting herbaceous wetland plants; and
- Ensure that development and agricultural uses that would damage the site or reduce the benefits of project are prevented.

1.2 Monitoring Year 2 Data Assessment

Annual monitoring and quarterly site visits were conducted during MY2 to assess the condition of the project. The stream, vegetation, and hydrologic success criteria for the Site follows the approved success criteria presented in the Vile Creek Mitigation Plan (Wildlands, 2016).

1.2.1 Stream Assessment

Morphological surveys for the MY2 were conducted in April 2018. All streams within the site appear stable with some areas exhibiting minor scour.

In general, the cross-sections show little change in the bankfull area, maximum depth ratio, and width-to-depth ratio. All cross-sections fell within the parameters defined for channels of the appropriate stream type (Rosgen, 1994 & 1996). Cross-section two shows slight scouring downstream of a vane/log sill which has created a micro-habitat within the chunky riffle structure. During MY1, cross-section seven reflected an increase in the cross-sectional area; however, there was no change during MY2. Wildlands will continue to watch these cross-sections in upcoming monitoring years.

Pebble counts in Vile Creek indicated little to no change in substrate material, while UT1 indicates coarser materials in the riffle features from MY2. Refer to Appendix 2 for the visual stability assessment table, Current Condition Plan View (CCPV) map, and reference photographs. Refer to Appendix 4 for the morphological data and plots.

1.2.2 Stream Hydrology Assessment

At the end of the seven-year monitoring period, two or more bankfull events and geomorphically significant (60%+ of bankfull flow) events must have occurred in separate years within the restoration and enhancement reaches.

During MY2, the Vile Creek Reach 2 stream gage documented two bankfull events and the UT1 stream gage documented one bankfull event; however, no geomorphically significant events were documented. With multiple bankfull events recorded during MY1 and MY2 on both Vile Creek Reach 2 and UT1; the success criteria have partially been met for the restoration streams. Although the two fall storms were geomorphical significant events, the documentation for the success criteria was not completed due to the monitoring schedule and the timing of the events. The geomorphical significant event will be documented within the remainder of the five year monitoring period. The Refer to Appendix 5 for hydrology summary data and plots.

1.2.3 Vegetative Assessment

A total of 17 woody vegetation plots were established during the baseline monitoring within the project easement area. The woody vegetation plots were installed using a 100 square meter quadrant (10m x 10m or 5m x 20m). The final woody vegetative success criteria will be the survival of 210 planted stems per acre in the planted riparian and wetland corridor at the end of the required monitoring period (MY7). The interim measure of vegetative success for the Site will be the survival of at least 320 planted stems per acre at the end of the third monitoring year (MY3) and at least 260 stems per acre at the end of the fifth monitoring year (MY5). Planted trees must average 10 feet in height in each plot at the end of the seventh year of monitoring. The success criteria for shrubs will be 160 surviving plants per acre at year 3, 130 at year 5, and 105 at year 7. There are no height criteria for shrubs. In addition, eight

herbaceous vegetation bog plots were installed using a 20 square meter (5m x 4m) quadrant. The bog plots are assessed by visually estimating the percent coverage within each plot and must have 80% coverage for success criteria.

The MY2 vegetative survey was completed in September 2018. The 2018 vegetation monitoring resulted in an average stem density of 502 stems per acre, which is greater than the interim requirement of 320 stems/acre required at MY3. During MY2, 15 of the 17 plots individually met the success criteria and the average stem height for the Site is 2.3 feet. With approximately 93% herbaceous coverage, the bog cells have become well established since project construction. Refer to Appendix 2 for vegetation plot photographs and the vegetation condition assessment table and Appendix 3 for vegetation data tables.

1.2.4 Wetland Assessment

A total of ten groundwater hydrology gages (GWGs) were established during the baseline monitoring within the wetland rehabilitation, wetland re-establishment, and bog areas. A barotroll logger (to measure barometric pressure used in the calculations of groundwater levels with gage transducer data) and a rain gage were also installed on Site. All monitoring gages are downloaded on a quarterly basis and maintained as needed. The final performance standard for wetland hydrology will be a free groundwater surface within 12 inches of the ground surface for 14 consecutive days (8.5%) of the defined 169-day growing season which is measured under typical precipitation conditions. The final performance standard for bog areas will be a free groundwater surface within 12 inches of the ground surface for 20 consecutive days (12%) of the growing season.

All ten GWGs met the success criteria for MY2; however, GWGs 2, 3 and 7-9 decreased from MY1. The decrease in water level for GWGs 7-9 may have been affected by lowering the most downstream berm that was initially backing up 6-10 inches of water. The measured hydroperiod ranged from 8% to 100% of the growing season. Wildlands will continue monitoring the change. Refer to Appendix 2 for the groundwater gage locations and Appendix 5 for groundwater hydrology summary data and plots.

1.2.5 Areas of Concern/Adaptive Management Plan

Following Hurricane Florene and Tropical Storm Michael in Fall 2018, areas of minor scour and erosion were observed along several meander bends including, but not limited to Vile Creek Reach 3 station 124+00, Vile Creek Reach 1 and UT1 confluence, UT1 Reach 1 station 211+50, and UT2 station 306+50. The bank erosion areas were mostly associated with Enhancement I and Enhancement II streams. The UT2 stream, which is an Enhancement II, was observed with bed aggradation at stations 308+75, 310+00, and station 311+25. Aggradation has resulted in sheet flow onto the flood plain rather than a single channel at station 311+25. While these areas are under the mapping threshold, Wildlands will continue to monitor the areas of concern during future site visits.

The were some areas that required some remedial action after the IRT and DMS MY1 site walk, which appear to be stable and functioning properly. Specifically, the middle bog area on the left floodplain along Vile Creek Reach 1 contained concentrated flow paths that conveyed water through the bog. To prevent a potential headcut, the flow was dispersed by placing three coir logs across the concentrated flow paths. This was intended to be a temporary measure to prevent erosion until the vegetation was established, which was noted to have improved throughout this area in MY2. Wildlands will continue to monitor in subsequent years.

Invasive species including Japanese barberry (*Berberis thunbergii*), Oriental bittersweet (*Celastrus orbiculatus*), and multiflora rose (*Rosa multiflora*) are present within and around the Site. These species are not impacting survival rates of planted stems at this time; however, 17.2% of the easement contained invasive plants that warranted treatment to prevent any future impact. The treatment

included cutting to the plants and applying glyphosate the stumps or stems. Refer to Appendix 2 for the vegetation condition assessment table and the CCPV map.

Less than 1% of the easement contains a few areas of poor herbaceous cover that are located between GWGs 7 and 8, along the right bank of UT2 around station 306+00 and the left bank of Vile Creek Reach 3 located at the boulder toe between stations 125+00 – 126+00. These areas will require additional seeding, fertilizing and live stakes around the Vile Creek Reach 3 section.

As stated earlier, multiple areas of erosion and scour have occurred throughout the Site. Wildlands will continue to monitor these areas and take necessary action to stabilize the bank, if the bank erosion advances.

1.3 Monitoring Year 2 Summary

The streams within the Site appear to be stable and functioning as designed. Multiple bankfull events were documented on both Vile Creek and UT1; therefore, the Site has partially met the stream hydrological success criteria of two or more bankfull events occurring in separate years within the restoration and enhancement reaches. The average planted stem density for the Site is 502 stems per acres and is on track to meeting the MY7 success criteria and 15 of the 17 individual vegetation plots meet the MY3 success criteria as noted in the CCPV. Vegetation plots 9 and 14 may warrant a supplemental planting next winter. All groundwater gage met the success criteria for MY2; however, a change was observed in the hydrology for multiple gages. Planned management and maintenance will continue to address any areas of concerns that should advance or arise.

Summary information and data related to the performance of various project and monitoring elements can be found in the tables and figures in the report appendices. Narrative background and supporting information formerly found in these reports can be found in the Mitigation Plan documents available on DMS's website. All raw data supporting the tables and figures in the appendices are available from DMS upon request.

Section 2: METHODOLOGY

Geomorphic data were collected following the standards outlined in The Stream Channel Reference Site: An Illustrated Guide to Field Techniques (Harrelson et al., 1994) and in the Stream Restoration: A Natural Channel Design Handbook (Doll et al., 2003). All Integrated Current Condition Mapping was recorded using either a Trimble or Topcon handheld GPS with sub-meter accuracy and processed using Pathfinder and ArcGIS. Crest gages were installed in surveyed riffle cross sections and monitored quarterly. Hydrologic monitoring instrument installation and monitoring methods are in accordance with the United States Army Corps of Engineers (USACE, 2003) standards. Planted woody vegetation is being monitored in accordance with the guidelines and procedures developed by the Carolina Vegetation Survey-EEP Level 2 Protocol (Lee et al., 2006).

Section 3: REFERENCES

- Doll, B.A., Grabow, G.L., Hall, K.A., Halley, J., Harman, W.A., Jennings, G.D., and Wise, D.E. 2003. Stream Restoration A Natural Channel Design Handbook.
- Harrelson, Cheryl C; Rawlins, C.L.; Potyondy, John P. 1994. *Stream Channel Reference Sites: An Illustrated Guide to Field Technique*. Gen. Tech. Rep. RM-245. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station. 61 p.
- Lee, Michael T., Peet, Robert K., Steven D., Wentworth, Thomas R. 2006. CVS-EEP Protocol for Recording Vegetation Version 4.0. Retrieved from http://deq.nc.gov/document/cvs-eep-protocol-v42-lev1-2
- North Carolina Division of Water Resources (NCDWR). 2016. Surface Water Classifications. Retrieved from http://deq.nc.gov/about/divisions/water-resources/planning/classification-standards/classifications
- North Carolina Department of Environment and Natural Resources. 2009. New River Basin Restoration Priorities. Retrieved from http://deq.nc.gov/about/divisions/mitigation-services/dms-planning/watershed-planning-documents/new-river-basin
- North Carolina Department of Environment and Natural Resources. 2007. Little River & Brush Creek Local Watershed Plan (LWP) Project Atlas. Retrieved from http://deq.nc.gov/about/divisions/mitigation-services/dms-planning/watershed-planning-documents/new-river-basin
- Rosgen, D. L. 1994. A classification of natural rivers. *Catena* 22:169-199.
- Rosgen, D.L. 1996. Applied River Morphology. Pagosa Springs, CO: Wildland Hydrology Books.
- United States Army Corps of Engineers (USACE). 2003. Stream Mitigation Guidelines. USACE, NCDENR-DWQ, USEPA, NCWRC.
- United States Army Corps of Engineers. Email 2018. Standard Measurement of the BHR Monitoring Parameter.
- United States Geological Survey (USGS). 1998. North Carolina Geology. https://deq.nc.gov/about/divisions/energy-mineral-land-resources/north-carolina-geological-survey/
- Wildlands Engineering, Inc. 2016. Vile Creek Mitigation Site Final Mitigation Plan. NCDMS, Raleigh, NC.

0 0.5 1 Mile

Figure 1 Project Vicinity Map Vile Creek Mitigation Site DMS Project No. 96582 Monitoring Year 2 - 2018

0 700 Feet

Figure 2 Project Component Map Vile Creek Mitigation Site DMS Project No. 96582 Monitoring Year 2 - 2018

Table 1. Project Components and Mitigation Credits

Vile Creek Mitigation Site DMS Project No. 96582

Monitoring Year 2 - 2018

	MITIGATION CREDITS										
	Stream Riparian Wetland			Non-Ripa	rian Wetland	Buffer	Nitrogen Nutrient Offset	Phosphorous Nutrient			
Туре	R	RE	R	RE	R	RE					
Totals	5,053.000	N/A	5.703	N/A	N/A	N/A	N/A	N/A	N/A		

					PR	ОЈЕСТ СОМР	ONENTS				
Reach ID	Existing Footage/ Acreage	Design Footage/ Acreage	Approach	Restoration (R) or Restoration Equivalent (RE)	As-Built Stationing/ Location ³	As Built Footage/ Acreage ³	Creditable As Built Footage/ Acreage ^{1,3}	Mitigation Ratio	Buffer Width Credit Reduction ²	As-Built Credits (SMU/WMU) ^{2,3}	Notes
	1	T	Ī	T		STREAMS	1	1	1	1	
Vile Creek Reach 1	962	920	P1	Restoration (R)	101+81 - 110+63	882	882	1:1	N/A	882.000	Alignment changed from mitigation plan/final design due to bedrock obstruction.
Vile Creek Reach 2	1,247	1,260	P1	Restoration (R)	110+63 -123+74	1,311	1,311	1:1	N/A	1,311.000	Alignment changed from mitigation plan/final design due to bedrock obstruction.
Vile Creek Reach 3	714	714	Bank Grading/ Fencing/Planting	Enhancement II (R)	123+74 - 130+87	713	713	2.5:1	6	279.000	As-Built credits were reduced for areas where easement is restricted and the full buffer width is not possible.
UT1 Reach 1	1,143	1,107	Reconstructing channel to correct profile & cross section	Enhancement I (R)	201+60 - 207+16 & 207+42 - 212+74	1,114	1,088	1.5:1	95	630.000	Excludes one 25 foot easement crossing break from 207+13 - 207+38. As-Built credits were reduced for areas where easement is restricted and the full buffer width is not possible.
UT1 Reach 2	989	825	P1	Restoration (R)	212+74 - 215+68 & 216+45 - 221+28	854	777	1:1	27	750.000	Excludes 77 feet of stream outside of conservation easement from 215+68 - 216+45. Alignment changed from design due to bedrock obstruction. As-Built credits were reduced for areas where easement is restricted and the full buffer width is not possible.
UT1B	128	128	Fencing/Planting	Enhancement II (R)	250+36 - 251+64	128	128	2.5:1	3	48.000	As-Built credits were reduced for areas where easement is restricted and the full buffer width is not possible.
UT1C	234	228	Fencing/Planting	Enhancement II (R)	270+53 - 272+81	228	228	2.5:1	2	89.000	As-Built credits were reduced for areas where easement is restricted and the full buffer width is not possible.
UT2	1,226	1,226	Fencing/Planting	Enhancement II (R)	300+36 - 312+62	1,226	1,226	2.5:1	N/A	490.000	
UT3	1,316	1,236	Fencing/Planting	Enhancement II (R)	401+10 - 412+94 & 413+29 - 414+26	1,316	1,236	2.5:1	33	461.000	Creditable length reduced by 45 LF to account for 45 LF of alignment that does not have the full bankfull width within the CE.
Little River	284	284	Fencing/Planting	Enhancement II (R)	502+33 - 505+17	284	284	2.5:1	N/A	114.000	
			Planting / Minor	WETLA			1			1	
Wetland Rehabilitation	3.02	3.02	grading	Restoration (R)	N/A	3.02	3.02	1.3:1	N/A	2.323	
Wetland Re- establishment	0	3.50	Grading / Planting	Restoration (R)	N/A	3.38	3.38	1:1	N/A	3.380	The reduction in wetland re-establishment acreage from design to as-built stages was mainly due to Vile Creek Reaches 1 and 2 having wider top widths in the as-built survey than in the design wetland area calculations. Thus, Vile Creek cut more into the wetland area in the as-built plans than it did in the design calculations, resulting in lower as-built wetland acreage.

¹ Creditable As-Built footage excludes conservation easement breaks and a section along UT3 that exists outside of conservation easement.

³Stream mitigation credits and stationg noted above are based on the as-built stream centerline.

	COMP	ONENT SU	JMMATIC	ON								
Restoration Level	Stream (LF)	Riparian Wetland (acres)	Non- Riparian Wetland (acres)	Buffer (square feet)	Upland (acres)							
Restoration	3,047.000											
Enhancement I	1,114.000											
Enhancement II	3,895.000											
Wetland Rehabilitation		3.020										
Wetland Re- establishment		3.380										

² As-Built credits (SMUs) have been adjusted where the easement is restricted and the full buffer width and/or bankfull width is not fully contained within the conservation easement. The reductions are greater in the sea built contained within the conservation easement. The reductions are greater in the sea built contained within the conservation easement.

in the as-built compared to the mitigation plan. The as-built credit reductions follows the updated 2016 USACE Wilmington District Stream and Wetland Compensatory Mitigation update.

Table 2. Project Activity and Reporting History

Vile Creek Mitigation Site
DMS Project No. 96582
Monitoring Year 2 - 2018

Activity or Report		Data Collection Complete	Completion or Scheduled Delivery	
Mitigation Plan		N/A	June 2016	
Final Design - Construction Plans		N/A	June 2016	
Construction		N/A	February 2017	
Temporary S&E mix applied to entire project area ¹		N/A	February 2017	
Permanent seed mix applied to reach/segments ¹		N/A	February 2017	
Bare root and live stake plantings for reach/segments		N/A	February 2017	
Paralia Adamina Danuarah (Vara O)	Stream Survey	March 2017	A mail 2017	
Baseline Monitoring Document (Year 0)	Vegetation Survey	April 2017	April 2017	
Waar 1 Manitaring	Stream Survey	September 2017	December 2017	
Year 1 Monitoring	Vegetation Survey	September 2017	December 2017	
Waar 2 Manitaring	Stream Survey	April 2018	November 2018	
Year 2 Monitoring	Vegetation Survey	September 2018	November 2018	
Voca 2 Monitorina	Stream Survey	2019	December 2019	
Year 3 Monitoring	Vegetation Survey	2019	December 2019	
Waar 4 Manitaring	Stream Survey	2020	December 2020	
Year 4 Monitoring	Vegetation Survey	2020	December 2020	
Wasa 5 Manikania	Stream Survey	2021	December 2021	
Year 5 Monitoring	Vegetation Survey	2021	December 2021	
Voor & Monitoring	Stream Survey	2022	December 2022	
Year 6 Monitoring	Vegetation Survey	2022	December 2022	
Voor 7 Monitoring	Stream Survey	2023	December 2023	
Year 7 Monitoring	Vegetation Survey	2023	December 2023	

¹Seed and mulch was added as each section of construction was completed.

Table 3. Project Contact Table

Vile Creek Mitigation Site DMS Project No.96582 Monitoring Year 2 - 2018

	Wildlands Engineering, Inc.
Designer	1430 South Mint Street, Ste 104
Jeff Keaton, PE	Charlotte, NC 28205
	704.332.7754
	Land Mechanics Design, Inc.
Construction Contractor	126 Circle G Lane
	Willow Spring, NC 27592
	Bruton Natural Systems, Inc
Planting Contractor	P.O. Box 1197
	Fremont, NC 27830
	Land Mechanics Design, Inc.
Seeding Contractor	126 Circle G Lane
	Willow Spring, NC 27592
Seed Mix Sources	Green Resource, LLC
Nursery Stock Suppliers	
Bare Roots	Dykes and Son Nursery
Live Stakes	Bruton Natural Systems, Inc.; Foggy Mountain Nursery, LLC
Plugs	Wetland Plants Inc.
Monitoring Performers	Wildlands Engineering, Inc.
Monitoring, POC	Kirsten Gimbert
Widilloring, roc	704.332.7754, ext. 110

Table 4. Project Information and Attributes

Vile Creek Mitigation Site DMS Project No. 96582 Monitoring Year 2 - 2018

		F	ROJECT II	NFORMAT	ION					
Project Name	Vile Creek Mi	tigation Site								
County	Alleghany Co	unty								
Project Area (acres)	25.04									
Project Coordinates (latitude and longitude)	36.510530° N	l, -80.104092°	W							
	PRC	JECT WA	TERSHED S	SUMMAR	Y INFORM	ATION				
hysiographic Province Blue Ridge Belt of the Blue Ridge Province										
River Basin	New									
USGS Hydrologic Unit 8-digit	05050001									
USGS Hydrologic Unit 14-digit	05050001030	05050001030020								
DWR Sub-basin	05-07-03									
Project Drainiage Area (acres)	22,912									
Project Drainage Area Percentage of Impervious Area	2%									
CGIA Land Use Classification	Managed He	baceous (50%	ရှိ), Forested (4	5%), Mountai	n Conifers (3%)), Impervious	(2%)			
		REAC	H SUMMA	RY INFOR	MATION					
Parameters	Vile Creek Reach 1	Vile Creek Reach 2	Vile Creek Reach 3	UT1 Reach 1	UT1 Reach 2	UT1B	UT1C	UT2	Little River	UT3
Length of Reach (linear feet) - Post-Restoration	882	1,311	713	1,114	854	128	228	1,226	284	1,316
Drainage Area (acres)	1,375	1,639	1,720	190	218	8	8	80	22,912	38
NCDWR Stream Identification Score - Pre-Restoration	45.5	45.5	45.5	43	43	28.25	26	27, 42.5	49.5	33.5
NCDWR Water Quality Classification			•	•		С	•	•	•	
Morphological Desription (stream type) - Pre-Restoration	C3	C4	C4	E4b	F4b	E4b	E4b	B4	C4	B4a

Evolutionary Trend (Simon's Model) - Pre-Restoration IV IV III IV III Ш Alluvial land, wet (Nikwasi); Chandler silt loam; Chandler stony silt loam; Chester loam; Chester stony loam; Clifton loam; Fannin silt loam; Stony Steep Underlying Mapped Soils Land; Tate loam; Tusquitee loam; Watauga loam Very poorly drained (Alluvial land, wet (Nikwasi); Well Drained (Chester loam, Chester stony loam, Clifton loam, Fannin silt loam, Tate loam, Tusquitee loam, Watauga loam); Somewhat excessively drained (Chandler silt loam, Chandlery stony silt loam); Excessively drained (Stony steep land). Drainage Class A/D (Nikwasi); A (Chandler silt loam, Chandler stony silt loam, Tusquitee loam, Stony steep land); B (Chester silt loam, Chester stony loam, Clifton loam, Fannin silt loam, Tate loam, Watauga loam) Soil Hydric Status Valley Slope - Pre-Restoration FEMA Classification 0.033 0.070 0.017 0.016 0.015 0.032 0.071 0.067 0.048 N/A ΑE Native Vegetation Community Montane Alluvial Forest, Southern Appalachian Bog Percent Composition Exotic Invasive Vegetation -Post-

REGULATORY CO	ONSIDERATIONS
---------------	---------------

<1%

	REGU	CATORT CONSIDER	ATIONS
Regulation	Applicable?	Resolved?	Supporting Documentation
Waters of the United States - Section 404	Yes	Yes	USACE Nationwide Permit No.27 and DWQ 401 Water Quality Certification No. 3885. Action ID#
Waters of the United States - Section 401	Yes	Yes	SAW-2014-01585
Division of Land Quality (Dam Safety)	N/A	N/A	N/A
Endangered Species Act	Yes	Yes	Vile Creek Mitigation Site Categorical Exclusion (CE) Approved 9/15/2014
Historic Preservation Act	Yes	Yes	No historic resources were found to be impacted (letter from SHPO dated 7/25/2014)
Coastal Zone Management Act (CZMA)/Coastal Area Management Act (CAMA)	No	N/A	N/A
FEMA Floodplain Compliance	Yes	No impact application was prepared for local review. No post-project activities required.	Vile Creek Final Mitigation Plan (June 2016) and Vile Creek Categorical Exclusion (CE) Approved
Essential Fisheries Habitat	No		Vile Creek Final Mitigation Plan (June 2016) and Vile Creek Categorical Exclusion (CE) Approved 9/15/2014

Figure 3.0 Integrated Current Condition Plan View (KEY)

Vile Creek Mitigation Site

DMS Project No. 96582

Monitoring Year 2 - 2018

Figure 3.1 Integrated Current Condition Plan View (Sheet 1)

Vile Creek Mitigation Site

DMS Project No. 96582

Monitoring Year 2 - 2018

0 100 200 Feet

Figure 3.2 Integrated Current Condition Plan View (Sheet 2)

Vile Creek Mitigation Site

DMS Project No. 96582 Monitoring Year 2 - 2018

0 100 200 Feet

Figure 3.3 Integrated Current Condition Plan View (Sheet 3)

Vile Creek Mitigation Site

DMS Project No. 96582 Monitoring Year 2 - 2018

0 100 200 Feet

Figure 3.4 Integrated Current Condition Plan View (Sheet 4)

Vile Creek Mitigation Site

DMS Project No. 96582

Monitoring Year 2 - 2018

Table 5a. Visual Stream Morphology Stability Assessment Table

Vile Creek Mitigation Site DMS Project No. 96582 Monitoring Year 2 - 2018

UT1 Reach 1 (1,114 LF)

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-Built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjust % for Stabilizing Woody Vegetation
	1. Vertical Stability	Aggradation			0	0	100%			
	(Riffle and Run units)	Degradation			0	0	100%			
1. Bed	2. Riffle Condition	Texture/Substrate	22	22			100%			
1. Beu	3. Meander Pool	Depth Sufficient	14	14			100%			
	Condition	Length Appropriate	14	14			100%			
	4. Thalweg Position	Thalweg centering at upstream of meander bend (Run) Thalweg centering at downstream of	14 14 14 14 14 14 14 14 14 14 14 14 14 1				100%			
		meander bend (Glide)								
	1. Scoured/Eroded	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion.			0	0	100%	n/a	n/a	n/a
2. Bank	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	n/a	n/a	n/a
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	n/a	n/a	n/a
				Totals	0	0	100%	n/a	n/a	n/a
	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	N/A	N/A			N/A			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	N/A	N/A			N/A			
3. Engineered Structures ¹	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	N/A	N/A			N/A			
	3. Bank Protection	Bank erosion within the structures extent of influence does not exceed 15%.	N/A	N/A			N/A			
	4. Habitat	Pool forming structures maintaining ~Max Pool Depth: Bankfull Depth ≥ 1.6 Rootwads/logs providing some cover at baseflow.	N/A	N/A			N/A			

Table 5b. Visual Stream Morphology Stability Assessment Table

Vile Creek Mitigation Site DMS Project No. 96582 Monitoring Year 2 - 2018

UT1 Reach 2 (854 LF)

UT1 Reach 2 (854 L Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-Built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjust % for Stabilizing Woody Vegetation
	1. Vertical Stability	Aggradation			0	0	100%			
	(Riffle and Run units)	Degradation			0	0	100%			
1. Bed	2. Riffle Condition	Texture/Substrate	11	11			100%			
1. Bed	3. Meander Pool	Depth Sufficient	11	11			100%			
	Condition	Length Appropriate	11	11			100%			
	4. Thalweg Position	Thalweg centering at upstream of meander bend (Run) Thalweg centering at downstream of	11	11			100%			
		meander bend (Glide)	11	11			100%			
	1. Scoured/Eroded	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion.			0	0	100%	n/a	n/a	n/a
2. Bank	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	n/a	n/a	n/a
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	n/a	n/a	n/a
				Totals	0	0	100%	n/a	n/a	n/a
	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	N/A	N/A			N/A			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	N/A	N/A			N/A			
3. Engineered Structures ¹	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	N/A	N/A			N/A			
	3. Bank Protection	Bank erosion within the structures extent of influence does not exceed 15%.	N/A	N/A			N/A			
	4. Habitat	Pool forming structures maintaining ~Max Pool Depth : Bankfull Depth ≥ 1.6 Rootwads/logs providing some cover at baseflow.	N/A	N/A			N/A			

Table 5c. Visual Stream Morphology Stability Assessment Table

Vile Creek Mitigation Site DMS Project No. 96582 Monitoring Year 2 - 2018

Vile Creek Reach 1 (882 LF)

/ile Creek Reach 1 Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-Built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjust % for Stabilizing Woody Vegetation
	1. Vertical Stability (Riffle and Run units)	Aggradation			0	0	100%			
		Degradation			0	0	100%			
1. Bed	2. Riffle Condition	Texture/Substrate	4	4			100%			
1. Bea	3. Meander Pool	Depth Sufficient	4	4			100%			
	Condition	Length Appropriate	4	4			100%			
	4. Thalweg Position	Thalweg centering at upstream of meander bend (Run)	4	4			100%			
		Thalweg centering at downstream of meander bend (Glide)	4	4			100%			
	1. Scoured/Eroded	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion.			0	0	100%	n/a	n/a	n/a
2. Bank	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	n/a	n/a	n/a
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	n/a	n/a	n/a
				Totals	0	0	100%	n/a	n/a	n/a
	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	2	2			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	2	2			100%			
3. Engineered Structures ¹	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	2	2			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does not exceed 15%.	2	2			100%			
	4. Habitat	Pool forming structures maintaining ~Max Pool Depth : Bankfull Depth ≥ 1.6 Rootwads/logs providing some cover at baseflow.	2	2			100%			

Table 5d. Visual Stream Morphology Stability Assessment Table

Vile Creek Mitigation Site DMS Project No. 96582 Monitoring Year 2 - 2018

Vile Creek Reach 2 (1,311 LF)

Vile Creek Reach 2	(1,311 LF)									. !!
Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-Built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjust % for Stabilizing Woody Vegetation
	1. Vertical Stability (Riffle and Run units)	Aggradation			0	0	100%			
		Degradation			0	0	100%			
	2. Riffle Condition	Texture/Substrate	11	11			100%			
1. Bed	3. Meander Pool	Depth Sufficient	8	8			100%			
	Condition	Length Appropriate	8	8			100%			
		Thalweg centering at upstream of meander bend (Run)	8	8			100%			
	4. Thalweg Position	Thalweg centering at downstream of meander bend (Glide)	8	8			100%			
				•			1			
	1. Scoured/Eroded	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion.			0	0	100%	n/a	n/a	n/a
2. Bank	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	n/a	n/a	n/a
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	n/a	n/a	n/a
				Totals	0	0	100%	n/a	n/a	n/a
	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	6	6			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	6	6			100%			
3. Engineered Structures ¹	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	6	6			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does not exceed 15%.	6	6			100%			
	4. Habitat	Pool forming structures maintaining ~Max Pool Depth: Bankfull Depth≥ 1.6 Rootwads/logs providing some cover at baseflow.	6	6			100%			

Table 5e. Visual Stream Morphology Stability Assessment Table

Vile Creek Mitigation Site DMS Project No. 96582 Monitoring Year 2 - 2018

Vile Creek Reach 3 (713 LF)

/ile Creek Reach 3 Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-Built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjust % for Stabilizing Woody Vegetation
	1. Vertical Stability	Aggradation			0	0	100%			
	(Riffle and Run units)	Degradation			0	0	100%			
	2. Riffle Condition	Texture/Substrate	1	1			100%			
1. Bed	3. Meander Pool	Depth Sufficient	1	1			100%			
	Condition	Length Appropriate	1	1			100%			
	4. Thalweg Position	Thalweg centering at upstream of meander bend (Run) Thalweg centering at downstream of	1	1			100%			
		meander bend (Glide)	1	1			100%			
	1. Scoured/Eroded	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion.			0	0	100%	n/a	n/a	n/a
2. Bank	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	n/a	n/a	n/a
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	n/a	n/a	n/a
				Totals	0	0	100%	n/a	n/a	n/a
	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	N/A	N/A			N/A			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	N/A	N/A			N/A			
3. Engineered Structures ¹	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	N/A	N/A			N/A			
	3. Bank Protection	Bank erosion within the structures extent of influence does not exceed 15%.	N/A	N/A			N/A			
	4. Habitat	Pool forming structures maintaining ~Max Pool Depth: Bankfull Depth≥ 1.6 Rootwads/logs providing some cover at baseflow.	N/A	N/A			N/A			

Table 6. Vegetation Condition Assessment Table

Vile Creek Mitigation Site DMS Project No. 96582 **Monitoring Year 2 - 2018**

Planted Acreage

17

Vegetation Category	Definitions		Number of Polygons	Combined Acreage	% of Planted Acreage
Bare Areas	Very limited cover of both woody and herbaceous material	0.1	2	0.1	0.6%
Low Stem Density Areas	Woody stem densities clearly below target levels based on MY3, 4, or 5 stem count criteria.	0.1	2	0.1	0.3%
		Total	4	0.2	0.9%
Areas of Poor Growth Rates or Vigor	Areas with woody stems of a size class that are obviously small given the monitoring year.	0.25 Ac	0	0.0	0.0%
	nulative Total	4	0.2	0.9%	

Easement Acreage

25

Vegetation Category Definitions		Mapping Threshold (SF)	Number of Polygons	Combined Acreage	% of Easement Acreage
Invasive Areas of Concern	Areas of points (if too small to render as polygons at map scale).	1,000	19	4.3	17.2%
Easement Encroachment Areas	Areas of points (if too small to render as polygons at map scale).	none	0	0	0.0%

Photo Point 1 – view upstream Vile Creek R1 (9/26/2018)

Photo Point 1 – view downstream Vile Creek R1 (9/26/2018)

Photo Point 2 – view upstream Vile Creek R1 (9/26/2018)

Photo Point 2 – view downstream Vile Creek R1 (9/26/2018)

Photo Point 3 – view upstream Vile Creek R1 (9/26/2018)

Photo Point 3 – view downstream Vile Creek R1 (9/26/2018)

Photo Point 4 – view upstream Vile Creek R1 (9/26/2018)

Photo Point 4 – view downstream Vile Creek R1 (9/26/2018)

Photo Point 5 – view upstream Vile Creek R1 (9/26/2018)

Photo Point 5 – view downstream Vile Creek R1 (9/26/2018)

Photo Point 6 – view upstream Vile Creek R1 (9/26/2018)

Photo Point 6 – view downstream Vile Creek R1 (9/26/2018)

Photo Point 7 – view upstream Vile Creek R1 (9/26/2018)

Photo Point 7 – view downstream Vile Creek R1 (9/26/2018)

Photo Point 8 – view upstream Vile Creek R1 (9/26/2018)

Photo Point 8 – view downstream Vile Creek R1 (9/26/2018)

Photo Point 9 – view upstream Vile Creek R1 (9/26/2018)

Photo Point 9 – view downstream Vile Creek R1 (9/26/2018)

Photo Point 10 – view upstream Vile Creek R2 (9/26/2018)

Photo Point 10 – view downstream Vile Creek R2 (9/26/2018)

Photo Point 11 – view upstream Vile Creek R2 (9/26/2018)

Photo Point 11 – view downstream Vile Creek R2 (9/26/2018)

Photo Point 12 – view upstream Vile Creek R2 (9/26/2018)

Photo Point 12 – view downstream Vile Creek R2 (9/26/2018)

Photo Point 13 – view upstream Vile Creek R2 (9/26/2018)

Photo Point 13 – view downstream Vile Creek R2 (9/26/2018)

Photo Point 14 – view upstream Vile Creek R2 (9/26/2018)

Photo Point 14 – view downstream Vile Creek R2 (9/26/2018)

Photo Point 15 – view upstream Vile Creek R2 (9/26/2018)

Photo Point 15 – view downstream Vile Creek R2 (9/26/2018)

Photo Point 16 – view upstream Vile Creek R2 (9/26/2018)

Photo Point 16 – view downstream Vile Creek R2 (9/26/2018)

Photo Point 17 – view upstream Vile Creek R2 (9/26/2018)

Photo Point 17 – view downstream Vile Creek R2 (9/26/2018)

Photo Point 18 – view upstream Vile Creek R2 (9/26/2018)

Photo Point 18 – view downstream Vile Creek R2 (9/26/2018)

Photo Point 19 – view upstream Vile Creek R3 (9/26/2018)

Photo Point 19 – view downstream Vile Creek R3 (9/26/2018)

Photo Point 20 – view upstream Vile Creek R3 (9/26/2018)

Photo Point 20 – view downstream Vile Creek R3 (9/26/2018)

Photo Point 21 – view upstream Vile Creek R3 (9/26/2018)

Photo Point 21 – view downstream Vile Creek R3 (9/26/2018)

Photo Point 22 – view upstream Vile Creek R3 (9/26/2018)

Photo Point 22 – view downstream Vile Creek R3 (9/26/2018)

Photo Point 23 – view upstream Little River (9/26/2018)

Photo Point 23 – view downstream Little River (9/26/2018)

Photo Point 24 – view upstream UT1 R1 (9/26/2018)

Photo Point 24 – view downstream UT1 R1 (9/26/2018)

Photo Point 25 – view upstream UT1 R1 (9/26/2018)

Photo Point 25 – view downstream UT1 R1 (9/26/2018)

Photo Point 26 – view upstream UT1 R1 (9/26/2018)

Photo Point 26 – view downstream UT1 R1 (9/26/2018)

Photo Point 27 – view upstream UT1 R1 (9/26/2018)

Photo Point 27 – view downstream UT1 R1 (9/26/2018)

Photo Point 28 – view upstream UT1 R2 (9/26/2018)

Photo Point 28 – view downstream UT1 R2 (9/26/2018)

Photo Point 29 – view upstream UT1 R2 (9/26/2018)

Photo Point 29 – view downstream UT1 R2 (9/26/2018)

Photo Point 30 – view upstream UT1 R2 (9/26/2018)

Photo Point 30 – view downstream UT1 R2 (9/26/2018)

Photo Point 31 – view upstream UT2 (9/26/2018)

Photo Point 31 – view downstream UT2 (9/26/2018)

Photo Point 31 – view of UT2 BMP (9/26/2018)

Photo Point 32 – view upstream UT2 (9/26/2018)

Photo Point 32 – view downstream UT2 (9/26/2018)

Photo Point 36 –stormwater wetland (9/26/2017)

Bog Vegetation Plot 2 - (9/12/2018)

Bog Vegetation Plot 3 - (9/12/2018)

Bog Vegetation Plot 4 - (9/12/2018)

Bog Vegetation Plot 5 - (9/12/2018)

Bog Vegetation Plot 6 - (9/13/2018)

Bog Vegetation Plot 7 - (9/13/2018)

Bog Vegetation Plot 8 - (9/13/2018)

Table 7. Vegetation Plot Criteria Attainment

Vile Creek Mitigation Site DMS Project No. 96582

Monitoring Year 2 - 2018

Plot	MY1 Success Criteria Met (Y/N)	Tract Mean
1	Υ	
2	Υ	
3	Υ	
4	Υ	
5	Υ	
6	Υ	
7	Y	
8	Υ	
9	N	88%
10	Υ	
11	Υ	
12	Υ	
13	Y	
14	N	
15	Y	
16	Υ	
17	Y	

Table 8. CVS Vegetation Plot Metadata

Vile Creek Mitigation Site DMS Project No. 96582

Monitoring Year 2 - 2018

Report Prepared By	Ruby Davis
Date Prepared	11/7/2018 15:28
Database Name	cvs-eep-entrytool-v2.5.0 Vile MY2.mdb
Database Location	Q:\ActiveProjects\005-02147 Vile Creek\Monitoring\Monitoring Year 2 (2018)\Vegetation Assessment
DESCRIPTION OF WORKSHEETS IN TH	IS DOCUMENT
Metadata	Description of database file, the report worksheets, and a summary of project(s) and project data.
Project Planted	Each project is listed with its PLANTED stems per acre, for each year. This excludes live stakes.
Project Total Stems	Each project is listed with its TOTAL stems per acre, for each year. This includes live stakes, all planted stems, and all natural/volunteer stems.
Plots	List of plots surveyed with location and summary data (live stems, dead stems, missing, etc.).
Vigor	Frequency distribution of vigor classes for stems for all plots.
Vigor by Spp	Frequency distribution of vigor classes listed by species.
Damage	List of most frequent damage classes with number of occurrences and percent of total stems impacted by each.
Damage by Spp	Damage values tallied by type for each species.
Damage by Plot	Damage values tallied by type for each plot.
Planted Stems by Plot and Spp	A matrix of the count of PLANTED living stems of each species for each plot; dead and missing stems are excluded.
ALL Stems by Plot and spp	A matrix of the count of total living stems of each species (planted and natural volunteers combined) for each plot; dead and missing stems are excluded.
PROJECT SUMMARY	
Project Code	96582
project Name	Vile Creek Restoration Project
Description	Stream and Wetland Mitigation
Required Plots (calculated)	17
Sampled Plots	17

Table 9a. Planted and Total Stem Counts

Vile Creek Mitigation Site DMS Project No. 96582 Monitoring Year 2 - 2018

											-	work Di-	A Data	/n//2-2-	010)								
			\/	etation F	1-4-1	1/		N-4 2	1/	4-4: 5		rent Plo				4-4: F	N-4 F			N-+C	1/	4-41 F	N-4 7
Scientific Name	Common Name	Species Type	PnoLS		710t 1	PnoLS	etation F	710t Z	PnoLS	tation F	710t 3	PnoLS	tation P P-all	10t 4 T	PnoLS	tation F	710t 5	PnoLS	tation F	710t 6	PnoLS	tation F P-all	710t 7
Acer rubrum	Red Maple	Tree	PIIOLS	P-all	_	PIIOLS	P-dii	<u>'</u>	1	P-dii	1	PIIOLS	P-dii		PIIOLS	P-all	1	PIIOLS	P-dii		PIIOLS	P-all	_
Alnus serrulata	Tag Alder	Shrub Tree			1			1	_								-						
Aronia arbutifolia	Red Chokeberry	Shrub			_			_															
Betula nigra	River Birch, Red Birch	Tree										3	3	3	1	1	1	4	4	4			
Carpinus caroliniana	Ironwood	Shrub Tree										1	1	1	1	1	1	2	2	2	1	1	1
Cephalanthus occidentalis	Buttonbush	Shrub Tree	5	5	5	7	7	7				1	1	1	1	1	1				1	1	1
Cornus amomum	Silky Dogwood	Shrub Tree	1	1	1	3	3	3	13	13	13												
		_	1	1	1	3	3	3	13	13	15				1	1	1				2	2	2
Diospyros virginiana	American Persimmon	Tree	-									_	3	_	3			_	2	_	7	7	7
Fraxinus pennsylvanica	Green Ash	Tree				-	_	_				3	3	3	3	3	3	2	2	2	/		/
Lindera benzoin	Northern Spicebush	Shrub Tree	6	6	6	1	1	1										3	3	3			
Liriodendron tulipifera	Tulip Poplar	Tree		-				-							_		_		_		_	_	_
Platanus occidentalis	Sycamore	Tree										4	4	4	1	1	1	3	3	4	2	2	2
Quercus pagoda	Cherrybark Oak	Tree										2	2	2	1	1	1	3	3	3	2	2	2
		Stem count	12	12	13	11	11	12	14	14	14	13	13	13	8	8	9	17	17	18	14	14	14
		size (ares)		1			1			1			1			1			1			1	
		size (ACRES)		0.02			0.02			0.02			0.02			0.02			0.02			0.02	
		Species count	3	3	4	3	3	4	2	2	2	4	4	4	5	5	6	5	5	5	4	4	4
		Stems per ACRE	486	486	526	445	445	486	567	567	567	526	526	526	324	324	364	688	688	728	567	567	567
											Cur	rent Plo			018)								
			Vege	etation F	lot 8	Vege	etation F	Plot 9	Vege	tation P	lot 10	Vege	tation P	ot 11	Vege	tation P	lot 12	Vege	tation P	lot 13	Vege	tation P	lot 14
Scientific Name	Common Name	Species Type	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS		Т
Acer rubrum	Red Maple	Tree																					
Alnus serrulata	Tag Alder	Shrub Tree												1									
Aronia arbutifolia	Red Chokeberry	Shrub																					
Betula nigra	River Birch, Red Birch	Tree							2	2	2	3	3	3	2	2	2	2	2	2			
Carpinus caroliniana	Ironwood	Shrub Tree				1	1	1	-			3	3	3	1	1	1						
Cephalanthus occidentalis	Buttonbush	Shrub Tree				1	1	1				3	3	3	1	1							
Cornus amomum	Silky Dogwood	Shrub Tree									2							1					
	American Persimmon	_	- 1	-	- 1			-			Z				2	2	-	2	2	-			
Diospyros virginiana		Tree	1	1	1	-	_	_	-	7	7	1			3	2	2	2	2	2			
Fraxinus pennsylvanica	Green Ash	Tree	6	6	6	1	1	1	7	/	/	1	1	1	3	3	3	1	1	1			
Lindera benzoin	Northern Spicebush	Shrub Tree				<u> </u>									<u> </u>								
Liriodendron tulipifera	Tulip Poplar	Tree	2	2	2	1	1	1	2	2	2	3	3	3	1	1	1				1	1	1
Platanus occidentalis	Sycamore	Tree	2	2	2	3	3	3	5	5	5	2	2	2	1	1	1	4	4	4	1	1	1
Quercus pagoda	Cherrybark Oak	Tree	3	3	3				3	3	3	1	1	1	4	4	4	3	3	3	2	2	2
		Stem count	14	14	14	6	6	6	19	19	21	13	13	14	14	14	14	12	12	12	4	4	4
		size (ares)		1			1			1			1			1			1			1	
		size (ACRES)		0.02			0.02			0.02			0.02			0.02			0.02			0.02	
		Species count	5	5	5	4	4	4	5	5	6	6	6	7	7	7	7	5	5	5	3	3	3
		Stems per ACRE	567	567	567	243	243	243	769	769	850	526	526	567	567	567	567	486	486	486	162	162	162
					Cur	rent Plo	ot Data	(MY2 2	018)						Anr	nual Me	eans						
			Vege	tation P	lot 15	Vege	tation P	lot 16	Vege	tation P	lot 17	M	/2 (9/20	18)	M	/1 (9/20	17)	M	/0 (3/20	17)			
Scientific Name	Common Name	Species Type	PnoLS	P-all	Т	PnoLS	P-all	T	PnoLS	P-all	T	PnoLS	P-all	T	PnoLS	P-all	T	PnoLS	P-all	T			
Acer rubrum	Red Maple	Tree										1	1	2	1	1	1				Ī		
Aronia arbutifolia	Red Chokeberry	Shrub												3							1		
Alnus serrulata	Tag Alder	Shrub Tree																1	1	1	t		
Betula nigra	River Birch	Tree	3	3	3	8	8	8	1	1	1	29	29	29	43	43	43	55	55	55	Ť		
Carpinus caroliniana	Ironwood	Shrub Tree	5	5	5	T -	<u> </u>	<u> </u>	1	1	1	16	16	16	21	21	21	21	21	21	t		
			Ť	Ť	Ť	1	1	1	1		<u> </u>	12	12	12	12	12	12	14	14	14	t		
Cephalanthus occidentalis	Buttonbush					1			.		-	17	17	19	16	16	16	19	19	19	t		
Corpus amonum	Buttonbush Silky Dogwood	Shrub Tree											1/		TO								
Cornus amomum	Silky Dogwood	Shrub Tree	1	1	1							۵									t		
Cornus amomum Diospyros virginiana	Silky Dogwood American Persimmon	Shrub Tree Tree	1	1	1				1	1	1	9	9	9	11	11	11	12	12	12	‡		
Cornus amomum Diospyros virginiana Fraxinus pennsylvanica	Silky Dogwood American Persimmon Green Ash	Shrub Tree Tree Tree	1	1	1				1	1	1	35	9 35	9 35	11 36	11 36	11 36	12 35	12 35	12 35	† 		
Cornus amomum Diospyros virginiana Fraxinus pennsylvanica Lindera benzoin	Silky Dogwood American Persimmon Green Ash Northern Spicebush	Shrub Tree Tree Tree Shrub Tree										35 7	9 35 7	9 35 7	11 36 11	11 36 11	11 36 11	12 35 14	12 35 14	12 35 14	† 		
Cornus amomum Diospyros virginiana Fraxinus pennsylvanica Lindera benzoin Liriodendron tulipifera	Silky Dogwood American Persimmon Green Ash Northern Spicebush Tulip Poplar	Shrub Tree Tree Tree Shrub Tree Tree	2	2	2				3	3	3	35 7 18	9 35 7 18	9 35 7 18	11 36 11 24	11 36 11 24	11 36 11 24	12 35 14 38	12 35 14 38	12 35 14 38	† 		
Cornus amomum Diospyros virginiana Fraxinus pennsylvanica Lindera benzoin Liriodendron tulipifera Platanus occidentalis	Silky Dogwood American Persimmon Green Ash Northern Spicebush Tulip Poplar Sycamore	Shrub Tree Tree Shrub Tree Tree Tree Tree	2 7	2 7	2				3	3	3	35 7 18 38	9 35 7 18 38	9 35 7 18 39	11 36 11 24 40	11 36 11 24 40	11 36 11 24 40	12 35 14 38 40	12 35 14 38 40	12 35 14 38 40	† 		
Cornus amomum Diospyros virginiana Fraxinus pennsylvanica Lindera benzoin Liriodendron tulipifera	Silky Dogwood American Persimmon Green Ash Northern Spicebush Tulip Poplar	Shrub Tree Tree Shrub Tree Tree Tree Tree Tree Tree	2 7 1	2 7 1	2 7 1	2	2	2	3 3 2	3 3 2	3 3 2	35 7 18 38 29	9 35 7 18 38 29	9 35 7 18 39 29	11 36 11 24 40 35	11 36 11 24 40 35	11 36 11 24 40 35	12 35 14 38 40 39	12 35 14 38 40 39	12 35 14 38 40 39			
Cornus amomum Diospyros virginiana Fraxinus pennsylvanica Lindera benzoin Liriodendron tulipifera Platanus occidentalis	Silky Dogwood American Persimmon Green Ash Northern Spicebush Tulip Poplar Sycamore	Shrub Tree Tree Shrub Tree Tree Tree Tree Tree Tree Tree Stem count	2 7	2 7 1 19	2	2 10	10	2 10	3	3 3 2 11	3	35 7 18 38	9 35 7 18 38 29 211	9 35 7 18 39	11 36 11 24 40	11 36 11 24 40 35 250	11 36 11 24 40	12 35 14 38 40	12 35 14 38 40 39 288	12 35 14 38 40			
Cornus amomum Diospyros virginiana Fraxinus pennsylvanica Lindera benzoin Liriodendron tulipifera Platanus occidentalis	Silky Dogwood American Persimmon Green Ash Northern Spicebush Tulip Poplar Sycamore	Shrub Tree Tree Shrub Tree Tree Tree Tree Tree Tree Tree Stem count size (ares)	2 7 1	2 7 1 19 1	2 7 1		10 1		3 3 2	3 3 2 11 1	3 3 2	35 7 18 38 29	9 35 7 18 38 29 211	9 35 7 18 39 29	11 36 11 24 40 35	11 36 11 24 40 35 250	11 36 11 24 40 35	12 35 14 38 40 39	12 35 14 38 40 39 288 1	12 35 14 38 40 39			
Cornus amomum Diospyros virginiana Fraxinus pennsylvanica Lindera benzoin Liriodendron tulipifera Platanus occidentalis	Silky Dogwood American Persimmon Green Ash Northern Spicebush Tulip Poplar Sycamore	Shrub Tree Tree Shrub Tree Tree Tree Tree Tree Stem count size (acres)	2 7 1	2 7 1 19 1 0.02	2 7 1 19	10	10 1 0.02	10	3 3 2 11	3 3 2 11 1 0.02	3 3 2 11	35 7 18 38 29 211	9 35 7 18 38 29 211 1 0.42	9 35 7 18 39 29 218	11 36 11 24 40 35 250	11 36 11 24 40 35 250 1 0.42	11 36 11 24 40 35 250	12 35 14 38 40 39 288	12 35 14 38 40 39 288 1	12 35 14 38 40 39 288			
Cornus amomum Diospyros virginiana Fraxinus pennsylvanica Lindera benzoin Liriodendron tulipifera Platanus occidentalis	Silky Dogwood American Persimmon Green Ash Northern Spicebush Tulip Poplar Sycamore	Shrub Tree Tree Shrub Tree Tree Tree Tree Tree Tree Tree Stem count size (ares)	2 7 1 19	2 7 1 19 1	2 7 1		10 1		3 3 2	3 3 2 11 1	3 3 2	35 7 18 38 29	9 35 7 18 38 29 211	9 35 7 18 39 29	11 36 11 24 40 35	11 36 11 24 40 35 250	11 36 11 24 40 35	12 35 14 38 40 39	12 35 14 38 40 39 288 1	12 35 14 38 40 39			

Color For Density

Table 9b. Planted Herbaceous Cover (Bog Cells)

Vile Creek Mitigation Site DMS Project No. 96582 Monitoring Year 2 - 2018

				Percent	Cover %			
Plot ID	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7
1	<5	30	65					
2	10	75	100					
3	<5	75	95					
4	<5	90	100					
5	<5	80	90					
6	<5	85	95					
7	<5	100	100					
8	50	95	100					

Table 10a. Baseline Stream Data Summary

Vile Creek Mitigation Site DMS Project No. 96582 Monitoring Year 2 - 2018

Vile Creek Reach 1, Reach 2

	PRE-RESTO	RATION CONDITIO	N			REFERENCE R	EACH DATA			DE	SIGN		AS-BUILT/BASELINE			
Parameter	Vile Creek Reach 1	Vile Cre	ek Reach 2	Meadow Creek	West Fork of	Chestnut Creek	Brush Creek	Little Glade Creek	Vile Cree	ek Reach 1	Vile Cre	eek Reach 2	Vile Cree	ek Reach 1	Vile Cree	ek Reach 2
	Min Max	Min	Max	Min Max	Min	Max	Min Max	Min Max	Min	Max	Min	Max	Min	Max	Min	Max
imension and Substrate - Riffle			*	-				<u> </u>		-		*		-		•
Bankfull Width (ft)	19.3		22.4	26.0	18.3	20.3	22.8	34.7	1	17.0		19.0	17.1	18.8	18.7	19.2
Floodprone Width (ft)	333		119	52.0					37	85	42	95		200	156	188
Bankfull Mean Depth	1.6		0.9	2.4	1.8	2.2	1.7	2.2	:	1.2		1.2	1.1	1.2	1.2	1.5
Bankfull Max Depth	2.7		1.6	3.3	2.2	2.8	2.3	2.4	1.4	1.7	1.5	1.9	1.9	2.1	2.0	2.3
Bankfull Cross-sectional Area (ft ²)	30.4 31.7	20.1	48.0	62.2	35.8	40.0	37.9	76.5	1	19.6		23.7	19.8	21.2	22.5	28.6
Width/Depth Ratio	12.2	7	25.1	10.9	8.3	11.5	13.4	15.8	1	14.7		15.2	13.7	17.8	12.9	15.5
Entrenchment Ratio	17.2		5.3	>2.2	>	2.2	>2.2	>2.2	2.2	5.0	2.2	5.0	>	2.2	>2	2.2
Bank Height Ratio	1.4		1.8		1.3	1.4	1.1	1.5	:	1.0		1.0	1.0	1.1	1	1.0
D50 (mm)	112.0	į	56.3										60.4	69.3	58.6	61.5
Riffle Length (ft)					1								19.7	74.1	18.3	94.1
Riffle Slope (ft/ft)	0.021 0.050	0.0190	0.063		0.0110	0.0280	0.0040	0.0140	0.0148	0.0333	0.016	0.0360	0.0164	0.0420	0.0187	0.0385
Pool Length (ft)													38.8	149.3	47.1	123.7
Pool Max Depth (ft)	2.9		3.1		3.8	4.1			1.4	2.9	1.5	3.1	3.1	4.4	3.4	5.5
Pool Spacing (ft)	36 69	33	88		31	124			34	119	38	133	55	161	87	172
Pool Volume (ft ³)															-	
attern																
Channel Beltwidth (ft)	38 90	42	93		64	71			51	119	57	133	34	127	48	88
Radius of Curvature (ft)	22 80	55	125		26	40			34	68	38	76	34	50	38	76
Rc:Bankfull Width (ft/ft)	1.1 4.1	2.4	5.6		1.3	2.0			2.0	4.0	2.0	4.0	1.8	2.9	2.0	4.1
Meander Wavelength (ft)	160 190	100	330						119	238	133	266	125	214	177	235
Meander Width Ratio	2.0 4.7	1.9	4.2						3	7	3	7	2	7	3	5
ubstrate, Bed and Transport Parameters			·		-	<u> </u>						· ·	1			
Ri%/Ru%/P%/G%/S%		1							T		1		T		1	
SC%/Sa%/G%/C%/B%/Be%																
d16/d35/d50/d84/d95/d100	8 7/30 2/99 4/180/243/>20	0 16/6 1/38	/95/139/>2048		1 .								0 15/0 39/25 7/	90 0/163 3/362	0 0.19/0.53/9.6/6	69 2/120 3/36
Reach Shear Stress (Competency) lb/ft ²	1.20		0.80							1.1		1.2	0.86	1.09	0.69	0.74
Max part size (mm) mobilized at bankfull	175		130		+					165		175	42	54	43	53
Stream Power (Capacity) W/m ²	2.0								-				3.8	5.9	4.1	5.8
dditional Reach Parameters								l	l				3.0	3.3		3.5
Drainage Area (SM)	2.2		2.6	2.70	1 1	60	1.67	3.30	T .	2.2		2.6	-	2.2	1 2	2.6
Watershed Impervious Cover Estimate (%)	2.2	3%	2.0	2.70					1			2.0	<u> </u>		3%	2.0
Rosgen Classification	C3		C4	С		E4	C4	C4		C	J	r		C		r
Bankfull Velocity (fps)	3.3 3.2	6.0	2.5		4.6	5.3	4.4	5.5		4.7		5.0	4.4	5.2	5.5	5.2
Design Bankfull Discharge (cfs)	100		120		164	210	168	424		100		120	87	133	103	144
Q- Little River LWP Regional 1.25-yr(cfs)	107		124		104	210	100	-127					67	133	103	144
Q- Little River LWP Regional 1.5-yr (cfs)	122		141													
Q- Rural Mountain Regional Curve (cfs)	180		206													
Q-Revised Piedmont/Mountain Regional Curve (cfs)	102		117													
Q- Basin Ration Method 1.1-yr (cfs)	101		121													
Q- Basin Ration Method 1.1-yr (cfs)	122		146													
Valley Length (ft)					1								-	29	10	042
Channel Thalweg Length (ft)	962		,247		1					920		1260	_	82		,311
Sinuosity	1.3		1.3						1.20	1.30	1.20	1.30		.21		26
	1.5			1				1	1.20	1.30	1.20	_				
Water Surface Slope (ft/ft)	0.014	0	.011		0	.010	0.012	0.010	0.0123	0.0133	0.0131	0.0142	Λ.	014	0.0	.012

(---): Data was not provided

Table 10b. Baseline Stream Data Summary

Vile Creek Mitigation Site DMS Project No. 96582 **Monitoring Year 2 - 2018**

UT1 Reach 1, UT1 Reach 2

UT1 Reach 1, UT1 Reach 2																	
	PRE-RES	TORATION CON	DITION			REFERENCE	REACH DATA				DE	SIGN			AS-BUILT	/BASELINE	
Parameter	UT1 Reach 1		UT1 Reach 2	Little Pine III UT2A		UT Upstream	UT to Gap Branch		mp Tributary		Reach 1		Reach 2		Reach 1		Reach 2
	Min M	ax M	n Max	Min Max	Min	Max	Min Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Dimension and Substrate - Riffle				1 125	T			T		1		T			T		
Bankfull Width (ft)	7.9		19.2 28.0	12.6 31.0	3.2	7.7	6.2	4.2	4.4		3.0		9.0	7.7	8.6		9.0
Floodprone Width (ft)	203.0		0.4		6	13	21	9	11	14	18	15	20	63	91		96 D.8
Bankfull Mean Depth	1.7		0.4	1.4 2.0	0.5 0.7	0.6	0.6 1.0		0.8).5		0.6	0.5	0.7		1.3
Bankfull Max Depth	7.3 10	.3 8.		18.1	1.9	3.6	3.8	1.0 3.4	1.2 3.6	0.7	0.8	0.7	0.9 5.2	1.1 4.1	1.1 5.9		7.8
Bankfull Cross-sectional Area (ft²) Width/Depth Ratio	8.6	.5 6.	43.9	8.7	5.2	16.4	10.1	5.2	5.5		4.9		15.6	12.4	14.7		1.4
Entrenchment Ratio	25.6		1.5	2.4	1.7	2.0	3.4	1.9	2.5	1.8	2.3	1.7	2.2		2.2		2.2
Bank Height Ratio	1.3		3.8	1.0	1.0	1.3	1.0		1.0		1.0		1.0	1.0	1.0		1.0
D50 (mm)	32		28.5											22.6	34.3		8.1
, ,	32		20.5											22.0	34.3		0.1
Profile														44.0	F2.4	42.5	60.7
Riffle Length (ft)	0.022	.1 0.02	80 0.071	0.0404 0.0517			0.0110 0.1400			0.0291	0.0640	0.0282	0.6200	11.0 0.0149	53.1 0.0410	13.5	60.7
Riffle Slope (ft/ft)	0.022 0.:	.1 0.02	80 0.0/1	0.0404 0.0517	0.0500	0.0700	0.0110 0.1400	0.0110	0.1220	0.0291	0.0640	0.0282	0.6200	13.0	36.9	0.0176 8.6	0.0897 42.5
Pool Length (ft) Pool Max Depth (ft)	2.3		1.6	2.2 2.5			6.1	1.8	2.8	1.1	1.9	1.2	2	0.8	2.6	8.6 1.1	2.5
Pool Spacing (ft)	15 3	9 1		78	14	25	18 27	5	58	1.1	48	162	486	7	59	38	88
		, 1			-		†	-			1		· ·	+			
Pool Volume (ft ³)																	
Pattern Clark College								T	1 4-	I	1	T 40		T	1	-	
Channel Beltwidth (ft)		5 6			_			16	17		/A ¹	13	32		I/A ¹	6	66
Radius of Curvature (ft)	12 4				_			8	11.8		/A ¹	20	59		I/A ¹	18	59
Rc:Bankfull Width (ft/ft)	1.5 5. 57 10							1.9	2.7 34		/A ¹	2.2 64	6.6 110		I/A ¹ I/A ¹	2.0 56	6.5 152
Meander Length (ft)								31			/A ¹				<u> </u>		
Meander Width Ratio	5.1 7.	0 3.	1 4.2					3.6	3.8	l N	/A ¹	1.5	3.6	l N	I/A ¹	1	7
Substrate, Bed and Transport Parameters Ri%/Ru%/P%/G%/S%					1					T		T		1			
SC%/Sa%/G%/C%/B%/Be%																	
d16/d35/d50/d84/d95/d100	0.4/1.7/25.9/137/203	/256 0.17/0	.55/26.9/133/205/256					T .						0.21/0.79/8.6/9	51.0/126.9/256.0	0 25/4 47/12 1/	70 5/101 2/180
Reach Shear Stress (Competency) lb/ft ²	0.7	230 0.1770	0.4					_		().5		0.6	0.53	0.84		.39
Max part size (mm) mobilized at bankfull	115		75								95		100	26	41		68
Stream Power (Capacity) W/m ²	113		,,,				I				33		100	1.54	3.4		3.2
														1.54	3.4		J. Z
Additional Reach Parameters Drainage Area (SM)	0.30		0.34	0.12		0.20	0.04	1 0	0.10	1 0	.30).34	1 0	0.30	0	.34
Watershed Impervious Cover Estimate (%)	0.50	1%	0.34	0.12			0.04			+		1%	,.J .	+ 0		%	+
Rosgen Classification	E4b	170	F4b	A/B		 34a	B4a/A4		 5b		В	•	В		В		В
Bankfull Velocity (fps)	1.7 2.	3 1.		0.5	3.8	5.4	5.0	3.4	3.6		3.8		3.9	2.8	3.9		5.3
Design Bankfull Discharge (cfs)	17	1.	20	9		12	19		12		17		20	8	16		42
Q- Little River LWP Regional 1.25-yr(cfs)	21		23	i			1							3	10		_
Q- Little River LWP Regional 1.5-yr (cfs)	24		26														
Q- Rural Mountain Regional Curve (cfs)	40		44								1		1		1		1
Q-Revised Piedmont/Mountain Regional Curve (cfs)	21		24														
Q- Basin Ration Method 1.1-yr (cfs)	16		16														
Q- Basin Ration Method 1.25-yr (cfs)	17		19														
Valley Length (ft)														9	903	7	755
Channel Thalweg Length (ft)	1,143		989							1,	132	8	863	1,	114		354
Sinuosity	1.26		1.3			1.1		1	1.6	1.0	- 1.1	1.0) - 1.1	1	1.2	1	1.1
Water Surface Slope (ft/ft) ²	0.022		0.028	0.0433	0.	0420	0.0680	0.0	0167	0.0291	0.0320	0.0282	0.0310	0.0	0264	0.0	0288
Bankfull Slope (ft/ft)	0.032		0.033		0.	0460		0.0	0229	0.0	320	0.0	0310	0.0	0261	0.0)284

(---): Data was not provided

¹ Design parameters for pattern features are not reported for UT1 Reach 1 because the channel was designed as Enhancement I.

Table 11. Morphology and Hydraulic Summary (Dimensional Parameters - Cross-Section)

Vile Creek Mitigation Site DMS Project No. 96582

Monitoring Year 2 - 2018

	Cross	-Section	າ 1, Vile	Creek	Reach 1	. (Pool)	Cross	-Sectior	ı 2, Vile	Creek I	Reach 1	(Riffle)	Cross-	Section	3, Vile	Creek I	Reach 1	(Riffle)
Dimension and Substrate ¹	Base	MY1	MY2	MY3	MY5	MY7	Base	MY1	MY2	MY3	MY5	MY7	Base	MY1	MY2	MY3	MY5	MY7
Bankfull Elevation (ft)	2700.8	2700.7	2701.0				2700.0	2700.0	2699.4				2695.7	2695.7	2695.5			
Low Bank Elevation (ft)	2700.8	2700.7	2700.8				2700.0	2700.0	2700.1				2695.7	2695.7	2695.6			
Bankfull Width (ft)	25.1	24.6	26.1				17.1	17.6	13.2				18.8	17.9	16.3			
Floodprone Width (ft)							>200	>200	>200				>200	>200	>200			
Bankfull Mean Depth (ft)	1.2	1.1	1.1				1.2	1.3	1.6				1.1	1.2	1.2			
Bankfull Max Depth (ft)	3.0	2.8	2.7				2.1	2.3	2.3				1.9	2.2	2.4			
Bankfull Cross-Sectional Area (ft ²)	29.2	25.8	29.2				21.2	22.7	21.2				19.8	20.9	19.8			
Bankfull Width/Depth Ratio							13.7	13.7	8.2				17.8	15.3	13.5			
Bankfull Entrenchment Ratio							>10.6	11.4	10.9				>10.7	>11.2	>6.0			
Bankfull Bank Height Ratio							1.1	1.1	1.3				1.0	1.0	1.1			
	Cross-	Section	4, Vile	Creek I	Reach 2	(Riffle)	Cross-	-Sectior	ı 5, Vile	Creek I	Reach 2	(Riffle)	Cross	-Sectio	n 6, Vile	Creek	Reach 2	(Pool)
Dimension and Substrate ¹	Base	MY1	MY2	MY3	MY5	MY7	Base	MY1	MY2	MY3	MY5	MY7	Base	MY1	MY2	MY3	MY5	MY7
Bankfull Elevation (ft)	2691.7	2691.7	2691.7				2688.9	2688.9	2688.8				2687.9	2687.9	2688.2			
Low Bank Elevation (ft)	2691.7	2691.7	2691.7				2688.9	2688.9	2689.0				2687.9	2687.9	2688.1			
Bankfull Width (ft)	18.7	19.4	20.1				19.2	19.8	17.5				24.1	24.0	26.5			
Floodprone Width (ft)	188.0	188.0	88.6				156.0	156.0	96.9									
Bankfull Mean Depth (ft)	1.2	1.2	1.1				1.5	1.5	1.6				1.8	1.6	1.7			
Bankfull Max Depth (ft)	2.0	2.3	2.2				2.3	2.5	2.5				3.6	4.0	3.9			
Bankfull Cross-Sectional Area (ft²)	22.5	23.1	22.5				28.6	29.7	28.6				44.3	39.6	44.3			
Bankfull Width/Depth Ratio	15.5	16.3	18.0				12.9	13.2	10.7									
Bankfull Entrenchment Ratio		9.7	4.4				8.1	7.9	5.5									
Bankfull Bank Height Ratio	1.0	1.0	1.0				1.0	1.0	1.1									
3 9 1 11 1			ion 7, L	T1 Rea	ch 1 (Ri	ffle)	Cr			UT1 Rea	ach 1 (P	ool)	Cro	ss-Sect	ion 9, U	T1 Rea	ch 1 (Ri	ffle)
Dimension and Substrate ¹				T1 Rea MY3	ch 1 (Ri MY5	ffle) MY7	Cr Base			JT1 Rea	ach 1 (P MY5	ool) MY7	Cro Base	ss-Sect	ion 9, L MY2	T1 Rea MY3	ch 1 (Ri	ffle) MY7
	Cro Base	ss-Sect	ion 7, L MY2					oss-Sec MY1	tion 8, I				Base		MY2			
Dimension and Substrate ¹	Base 2743.9	MY1 2743.9	ion 7, L MY2 2743.5				Base	oss-Sec MY1	tion 8, I				Base 2725.3	MY1	MY2 2725.4			
Dimension and Substrate ¹ Bankfull Elevation (ft)	Cro Base 2743.9 2743.9	MY1 2743.9	ion 7, L MY2 2743.5				Base 2725.7	oss-Sec MY1 2725.7	MY2 2726.2				Base 2725.3	MY1 2725.3	MY2 2725.4			
Dimension and Substrate ¹ Bankfull Elevation (ft) Low Bank Elevation (ft)	Base 2743.9 2743.9 8.6	MY1 2743.9 2743.9	ion 7, L MY2 2743.5 2743.9				Base 2725.7 2725.7	MY1 2725.7 2725.7	MY2 2726.2 2726.0				Base 2725.3 2725.3	MY1 2725.3 2725.3	MY2 2725.4 2725.3			
Dimension and Substrate ¹ Bankfull Elevation (ft) Low Bank Elevation (ft) Bankfull Width (ft)	2743.9 2743.9 8.6 63.0	MY1 2743.9 2743.9 8.1	MY2 2743.5 2743.9 5.1				Base 2725.7 2725.7 11.3	oss-Sec MY1 2725.7 2725.7 8.2	MY2 2726.2 2726.0 10.2				Base 2725.3 2725.3 7.7	MY1 2725.3 2725.3 6.5	MY2 2725.4 2725.3 7.1			
Dimension and Substrate ¹ Bankfull Elevation (ft) Low Bank Elevation (ft) Bankfull Width (ft) Floodprone Width (ft)	2743.9 2743.9 2743.9 8.6 63.0 0.7	MY1 2743.9 2743.9 8.1 63.0	MY2 2743.5 2743.9 5.1 83.7				Base 2725.7 2725.7 11.3	oss-Sec MY1 2725.7 2725.7 8.2	MY2 2726.2 2726.0 10.2				Base 2725.3 2725.3 7.7 97.0	MY1 2725.3 2725.3 6.5 97.0	MY2 2725.4 2725.3 7.1 80.2			
Dimension and Substrate ¹ Bankfull Elevation (ft) Low Bank Elevation (ft) Bankfull Width (ft) Floodprone Width (ft) Bankfull Mean Depth (ft)	2743.9 2743.9 2743.9 8.6 63.0 0.7	MY1 2743.9 2743.9 8.1 63.0 1.2	MY2 2743.5 2743.9 5.1 83.7 1.2				Base 2725.7 2725.7 11.3 0.6	MY1 2725.7 2725.7 2725.7 8.2 0.5	MY2 2726.2 2726.0 10.2 0.7				Base 2725.3 2725.3 7.7 97.0 0.5	MY1 2725.3 2725.3 6.5 97.0 0.7	MY2 2725.4 2725.3 7.1 80.2 0.6			
Dimension and Substrate ¹ Bankfull Elevation (ft) Low Bank Elevation (ft) Bankfull Width (ft) Floodprone Width (ft) Bankfull Mean Depth (ft) Bankfull Max Depth (ft)	Rase 2743.9 2743.9 8.6 63.0 0.7 1.1 5.9	MY1 2743.9 2743.9 8.1 63.0 1.2 2.2	ion 7, U MY2 2743.5 2743.9 5.1 83.7 1.2 1.7				Base 2725.7 2725.7 11.3 0.6 1.4	oss-Sec MY1 2725.7 2725.7 8.2 0.5 0.8	my2 2726.2 2726.0 10.2 0.7 1.2				Base 2725.3 2725.3 7.7 97.0 0.5 1.1	MY1 2725.3 2725.3 6.5 97.0 0.7 1.1	MY2 2725.4 2725.3 7.1 80.2 0.6 1.1			
Dimension and Substrate ¹ Bankfull Elevation (ft) Low Bank Elevation (ft) Bankfull Width (ft) Floodprone Width (ft) Bankfull Mean Depth (ft) Bankfull Max Depth (ft) Bankfull Cross-Sectional Area (ft²)	Rase 2743.9 2743.9 8.6 63.0 0.7 1.1 5.9	8.1 63.0 1.2 9.4	ion 7, U MY2 2743.5 2743.9 5.1 83.7 1.2 1.7 5.9				Base 2725.7 2725.7 11.3 0.6 1.4 7.1	oss-Sec MY1 2725.7 2725.7 8.2 0.5 0.8 4.4	tion 8, 0 MY2 2726.2 2726.0 10.2 0.7 1.2 7.1				Base 2725.3 2725.3 7.7 97.0 0.5 1.1 4.1	MY1 2725.3 2725.3 6.5 97.0 0.7 1.1 4.2	MY2 2725.4 2725.3 7.1 80.2 0.6 1.1 4.1			
Dimension and Substrate ¹ Bankfull Elevation (ft) Low Bank Elevation (ft) Bankfull Width (ft) Floodprone Width (ft) Bankfull Mean Depth (ft) Bankfull Max Depth (ft) Bankfull Cross-Sectional Area (ft²) Bankfull Width/Depth Ratio	8.6 63.0 0.7 1.1 5.9 12.4 7.3	MY1 2743.9 2743.9 8.1 63.0 1.2 2.2 9.4 7.0	ion 7, L MY2 2743.5 2743.9 5.1 83.7 1.2 1.7 5.9				Base 2725.7 2725.7 11.3 0.6 1.4 7.1	MY1 2725.7 2725.7 8.2 0.5 0.8 4.4	my2 2726.2 2726.0 10.2 0.7 1.2 7.1				Base 2725.3 2725.3 7.7 97.0 0.5 1.1 4.1 14.7	MY1 2725.3 2725.3 6.5 97.0 0.7 1.1 4.2 9.9	MY2 2725.4 2725.3 7.1 80.2 0.6 1.1 4.1 12.2			
Dimension and Substrate ¹ Bankfull Elevation (ft) Low Bank Elevation (ft) Bankfull Width (ft) Floodprone Width (ft) Bankfull Mean Depth (ft) Bankfull Max Depth (ft) Bankfull Cross-Sectional Area (ft ²) Bankfull Width/Depth Ratio Bankfull Entrenchment Ratio	8.6 63.0 0.7 1.1 5.9 12.4 7.3	MY1 2743.9 2743.9 8.1 63.0 1.2 2.2 9.4 7.0 7.8	ion 7, L MY2 2743.5 2743.9 5.1 83.7 1.2 1.7 5.9 4.4 16.4	MY3	MY5	MY7	Base 2725.7 2725.7 11.3 0.6 1.4 7.1	oss-Sec MY1 2725.7 2725.7 8.2 0.5 0.8 4.4 	my2 2726.2 2726.0 10.2 0.7 1.2 7.1	MY3		MY7	## Base 2725.3 2725.3 7.7 97.0 0.5 1.1 4.1 14.7 12.5	MY1 2725.3 2725.3 6.5 97.0 0.7 1.1 4.2 9.9 15.0	MY2 2725.4 2725.3 7.1 80.2 0.6 1.1 4.1 12.2 11.3			
Dimension and Substrate ¹ Bankfull Elevation (ft) Low Bank Elevation (ft) Bankfull Width (ft) Floodprone Width (ft) Bankfull Mean Depth (ft) Bankfull Max Depth (ft) Bankfull Cross-Sectional Area (ft ²) Bankfull Width/Depth Ratio Bankfull Entrenchment Ratio	8.6 63.0 0.7 1.1 5.9 12.4 7.3	MY1 2743.9 2743.9 8.1 63.0 1.2 2.2 9.4 7.0 7.8	ion 7, L MY2 2743.5 2743.9 5.1 83.7 1.2 1.7 5.9 4.4 16.4 1.3	MY3	MY5	MY7	Base 2725.7 2725.7 11.3 0.6 1.4 7.1	oss-Sec MY1 2725.7 2725.7 8.2 0.5 0.8 4.4 	my2 2726.2 2726.0 10.2 0.7 1.2 7.1	MY3	MY5	MY7	## Base 2725.3 2725.3 7.7 97.0 0.5 1.1 4.1 14.7 12.5	MY1 2725.3 2725.3 6.5 97.0 0.7 1.1 4.2 9.9 15.0	MY2 2725.4 2725.3 7.1 80.2 0.6 1.1 4.1 12.2 11.3			
Dimension and Substrate ¹ Bankfull Elevation (ft) Low Bank Elevation (ft) Bankfull Width (ft) Floodprone Width (ft) Bankfull Mean Depth (ft) Bankfull Max Depth (ft) Bankfull Cross-Sectional Area (ft²) Bankfull Width/Depth Ratio Bankfull Entrenchment Ratio	8.6 63.0 0.7 1.1 5.9 12.4 7.3 1.0 Cro Base	8.1 63.0 1.2 9.4 7.0 7.8 1.0 ss-Sect	ion 7, U MY2 2743.5 2743.9 5.1 83.7 1.2 1.7 5.9 4.4 1.3 ion 10, MY2	MY3	MY5	MY7	Base 2725.7 2725.7 11.3 0.6 1.4 7.1 Cro	oss-Sect MY1 2725.7 2725.7 8.2 0.5 0.8 4.4 ss-Sect	my2 2726.2 2726.0 10.2 0.7 1.2 7.1 ion 11,	MY3	MY5	MY7	## Base 2725.3 2725.3 7.7 97.0 0.5 1.1 4.1 14.7 12.5	MY1 2725.3 2725.3 6.5 97.0 0.7 1.1 4.2 9.9 15.0	MY2 2725.4 2725.3 7.1 80.2 0.6 1.1 4.1 12.2 11.3			
Dimension and Substrate ¹ Bankfull Elevation (ft) Low Bank Elevation (ft) Bankfull Width (ft) Floodprone Width (ft) Bankfull Mean Depth (ft) Bankfull Max Depth (ft) Bankfull Moar Depth (ft) Bankfull Cross-Sectional Area (ft²) Bankfull Width/Depth Ratio Bankfull Entrenchment Ratio Bankfull Bank Height Ratio Dimension and Substrate ¹ Bankfull Elevation (ft) Low Bank Elevation (ft)	Base 2743.9 8.6 63.0 0.7 1.1 5.9 12.4 7.3 1.0 Crc Base 2713.5 2713.5	8.1 63.0 1.2 9.4 7.0 7.8 1.0 ss-Sect MY1 2713.5	ion 7, U MY2 2743.5 2743.9 5.1 83.7 1.2 1.7 5.9 4.4 16.4 1.3 ion 10, MY2 2713.8	MY3	MY5	MY7	Base 2725.7 2725.7 11.3 0.6 1.4 7.1 Cro Base 2712.9	055-Sect MY1 2725.7 2725.7 8.2 0.5 0.8 4.4 ss-Sect MY1	tion 8, MY2 2726.2 2726.0 10.2 0.7 1.2 7.1 ion 11, MY2 2713.0	MY3	MY5	MY7	## Base 2725.3 2725.3 7.7 97.0 0.5 1.1 4.1 14.7 12.5	MY1 2725.3 2725.3 6.5 97.0 0.7 1.1 4.2 9.9 15.0	MY2 2725.4 2725.3 7.1 80.2 0.6 1.1 4.1 12.2 11.3			
Dimension and Substrate ¹ Bankfull Elevation (ft) Low Bank Elevation (ft) Bankfull Width (ft) Floodprone Width (ft) Bankfull Mean Depth (ft) Bankfull Max Depth (ft) Bankfull Cross-Sectional Area (ft²) Bankfull Width/Depth Ratio Bankfull Entrenchment Ratio Bankfull Bank Height Ratio Dimension and Substrate ¹ Bankfull Elevation (ft) Low Bank Elevation (ft) Bankfull Width (ft)	Base 2743.9 8.6 63.0 0.7 1.1 5.9 12.4 7.3 1.0 Crc Base 2713.5 2713.5	9.4 7.0 7.8 1.0 9.5 9.4 7.0 7.8 1.0 9.5 9.4 7.0 7.8 1.0 9.5 9.4 7.0 7.8 1.0 9.5 9.7 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5	ion 7, U MY2 2743.5 2743.9 5.1 83.7 1.2 1.7 5.9 4.4 16.4 1.3 ion 10, MY2 2713.8 2713.5 12.8	MY3	MY5	MY7	Base 2725.7 11.3 0.6 1.4 7.1 Cro Base 2712.9 9.0	oss-Sect MY1 2725.7 2725.7 8.2 0.5 0.8 4.4 ss-Sect MY1 2712.9 2712.9	tion 8, MY2 2726.2 2726.0 10.2 0.7 1.2 7.1 ion 11, MY2 2713.0 2712.9 10.1	MY3	MY5	MY7	## Base 2725.3 2725.3 7.7 97.0 0.5 1.1 4.1 14.7 12.5	MY1 2725.3 2725.3 6.5 97.0 0.7 1.1 4.2 9.9 15.0	MY2 2725.4 2725.3 7.1 80.2 0.6 1.1 4.1 12.2 11.3			
Dimension and Substrate ¹ Bankfull Elevation (ft) Low Bank Elevation (ft) Bankfull Width (ft) Floodprone Width (ft) Bankfull Mean Depth (ft) Bankfull Max Depth (ft) Bankfull Cross-Sectional Area (ft²) Bankfull Width/Depth Ratio Bankfull Entrenchment Ratio Bankfull Bank Height Ratio Dimension and Substrate ¹ Bankfull Elevation (ft) Low Bank Elevation (ft) Bankfull Width (ft)	Base 2743.9 8.6 63.0 0.7 1.1 5.9 12.4 7.3 1.0 Crc Base 2713.5 2713.5 13.3	9.4 7.0 9.4 7.0 9.5 9.4 7.0 9.5 9.4 7.0 9.5 9.4 7.0 9.5 9.4 7.0 9.5 9.4 7.0 9.5 9.4 7.0 9.5 9.4 7.0 9.5 9.4 7.0 9.5 9.4 7.0 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5	ion 7, U MY2 2743.5 2743.9 5.1 83.7 1.2 1.7 5.9 4.4 16.4 1.3 ion 10, MY2 2713.8 2713.5 12.8	MY3	MY5	MY7	Base 2725.7 2725.7 11.3 0.6 1.4 7.1 Cro Base 2712.9 9.0 96.0	oss-Sect MY1 2725.7 2725.7 8.2 0.5 0.8 4.4 ss-Sect MY1 2712.9 2712.9 12.6 96.0	tion 8, MY2 2726.2 2726.0 10.2 0.7 1.2 7.1 ion 11, MY2 2713.0 2712.9 10.1 85.3	MY3	MY5	MY7	## Base 2725.3 2725.3 7.7 97.0 0.5 1.1 4.1 14.7 12.5	MY1 2725.3 2725.3 6.5 97.0 0.7 1.1 4.2 9.9 15.0	MY2 2725.4 2725.3 7.1 80.2 0.6 1.1 4.1 12.2 11.3			
Dimension and Substrate ¹ Bankfull Elevation (ft) Low Bank Elevation (ft) Bankfull Width (ft) Floodprone Width (ft) Bankfull Max Depth (ft) Bankfull Cross-Sectional Area (ft²) Bankfull Width/Depth Ratio Bankfull Entrenchment Ratio Bankfull Bank Height Ratio Dimension and Substrate ¹ Bankfull Elevation (ft) Low Bank Elevation (ft) Bankfull Width (ft) Bankfull Width (ft)	Cro Base 2743.9 8.6 63.0 0.7 1.1 5.9 12.4 7.3 1.0 Cro Base 2713.5 2713.5 1.3.3	7.0 my1	ion 7, U MY2 2743.5 2743.9 5.1 83.7 1.2 1.7 5.9 4.4 16.4 1.3 ion 10, MY2 2713.8 2713.5 12.8	MY3	MY5	MY7	Base 2725.7 2725.7 11.3 0.6 1.4 7.1 Cro Base 2712.9 9.0 96.0 0.8	oss-Sec MY1 2725.7 2725.7 8.2 0.5 0.8 4.4 ss-Sect MY1 2712.9 12.6 96.0 0.5	tion 8, MY2 2726.2 2726.0 10.2 0.7 1.2 7.1 ion 11, MY2 2713.0 2712.9 10.1 85.3 1.5	MY3	MY5	MY7	## Base 2725.3 2725.3 7.7 97.0 0.5 1.1 4.1 14.7 12.5	MY1 2725.3 2725.3 6.5 97.0 0.7 1.1 4.2 9.9 15.0	MY2 2725.4 2725.3 7.1 80.2 0.6 1.1 4.1 12.2 11.3			
Dimension and Substrate ¹ Bankfull Elevation (ft) Low Bank Elevation (ft) Bankfull Width (ft) Floodprone Width (ft) Bankfull Mean Depth (ft) Bankfull Max Depth (ft) Bankfull Cross-Sectional Area (ft²) Bankfull Width/Depth Ratio Bankfull Entrenchment Ratio Bankfull Bank Height Ratio Dimension and Substrate ¹ Bankfull Elevation (ft) Low Bank Elevation (ft) Bankfull Width (ft)	Base 2743.9 8.6 63.0 0.7 1.1 5.9 12.4 7.3 1.0 Crc Base 2713.5 2713.5 13.3	**************************************	ion 7, U MY2 2743.5 2743.9 5.1 83.7 1.2 1.7 5.9 4.4 16.4 1.3 ion 10, MY2 2713.8 2713.5 1.2.8 1.0 2.2	MY3	MY5	MY7	Base 2725.7 11.3 0.6 1.4 7.1 Cro Base 2712.9 2712.9 9.0 96.0 0.8 1.3	oss-Sec MY1 2725.7 2725.7 8.2 0.5 0.8 4.4 ss-Sect MY1 2712.9 2712.9 2712.9 12.6 96.0 0.5	tion 8, MY2 2726.2 2726.0 10.2 0.7 1.2 7.1 ion 11, MY2 2713.0 2712.9 10.1 85.3 1.5	MY3	MY5	MY7	## Base 2725.3 2725.3 7.7 97.0 0.5 1.1 4.1 14.7 12.5	MY1 2725.3 2725.3 6.5 97.0 0.7 1.1 4.2 9.9 15.0	MY2 2725.4 2725.3 7.1 80.2 0.6 1.1 4.1 12.2 11.3			
Dimension and Substrate ¹ Bankfull Elevation (ft) Low Bank Elevation (ft) Bankfull Width (ft) Floodprone Width (ft) Bankfull Max Depth (ft) Bankfull Max Depth (ft') Bankfull Cross-Sectional Area (ft') Bankfull Bankfull Bank Height Ratio Dimension and Substrate ¹ Bankfull Elevation (ft) Low Bank Elevation (ft) Bankfull Width (ft) Floodprone Width (ft) Bankfull Mean Depth (ft) Bankfull Mean Depth (ft) Bankfull Max Depth (ft) Bankfull Max Depth (ft) Bankfull Max Depth (ft)	Cro Base 2743.9 8.6 63.0 0.7 1.1 5.9 12.4 7.3 1.0 Cro Base 2713.5 2713.5 1.3.3	7.0 my1	ion 7, U MY2 2743.5 2743.9 5.1 83.7 1.2 1.7 5.9 4.4 16.4 1.3 ion 10, MY2 2713.8 2713.5 12.8	MY3	MY5	MY7	Base 2725.7 2725.7 11.3 0.6 1.4 7.1 Cro Base 2712.9 9.0 96.0 0.8	oss-Sec MY1 2725.7 2725.7 8.2 0.5 0.8 4.4 ss-Sect MY1 2712.9 2712.9 2712.9 12.6 96.0 0.5	tion 8, MY2 2726.2 2726.0 10.2 0.7 1.2 7.1 ion 11, MY2 2713.0 2712.9 10.1 85.3 1.5 7.8	MY3	MY5	MY7	## Base 2725.3 2725.3 7.7 97.0 0.5 1.1 4.1 14.7 12.5	MY1 2725.3 2725.3 6.5 97.0 0.7 1.1 4.2 9.9 15.0	MY2 2725.4 2725.3 7.1 80.2 0.6 1.1 4.1 12.2 11.3			
Dimension and Substrate ¹ Bankfull Elevation (ft) Low Bank Elevation (ft) Bankfull Width (ft) Floodprone Width (ft) Bankfull Max Depth (ft) Bankfull Max Depth (ft) Bankfull Width/Depth Ratio Bankfull Entrenchment Ratio Bankfull Bank Height Ratio Dimension and Substrate ¹ Bankfull Elevation (ft) Low Bank Elevation (ft) Bankfull Width (ft) Floodprone Width (ft) Bankfull Max Depth (ft) Bankfull Max Depth (ft) Bankfull Cross-Sectional Area (ft²) Bankfull Width/Depth Ratio	Cro Base 2743.9 8.6 63.0 0.7 1.1 5.9 12.4 7.3 1.0 Cro Base 2713.5 2713.5 13.3 0.9 1.9	7.0 7.8 1.0 8.1 7.0 7.8 1.0 8.5 8.1 63.0 1.2 2.2 9.4 7.0 7.8 1.0 8.5 8.1 9.0 7.8 1.0 8.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9	ion 7, U MY2 2743.5 2743.9 5.1 83.7 1.2 1.7 5.9 4.4 16.4 1.3 ion 10, MY2 2713.8 2713.5 1.2.8 1.0 2.2	MY3	MY5	MY7	Base 2725.7 11.3 0.6 1.4 7.1 Cro Base 2712.9 9.0 96.0 0.8 1.3 7.8 11.4	oss-Sect MY1 2725.7 2725.7 8.2 0.5 0.8 4.4 ss-Sect MY1 2712.9 2712.9 12.6 96.0 0.5 1.4 6.5 24.5	tion 8, MY2 2726.2 2726.0 10.2 0.7 1.2 7.1 ion 11, MY2 2713.0 2712.9 10.1 85.3 1.5 7.8 13.0	MY3	MY5	MY7	## Base 2725.3 2725.3 7.7 97.0 0.5 1.1 4.1 14.7 12.5	MY1 2725.3 2725.3 6.5 97.0 0.7 1.1 4.2 9.9 15.0	MY2 2725.4 2725.3 7.1 80.2 0.6 1.1 4.1 12.2 11.3			
Dimension and Substrate ¹ Bankfull Elevation (ft) Low Bank Elevation (ft) Bankfull Width (ft) Floodprone Width (ft) Bankfull Max Depth (ft) Bankfull Max Depth (ft') Bankfull Cross-Sectional Area (ft') Bankfull Bankfull Bank Height Ratio Dimension and Substrate ¹ Bankfull Elevation (ft) Low Bank Elevation (ft) Bankfull Width (ft) Floodprone Width (ft) Bankfull Mean Depth (ft) Bankfull Mean Depth (ft) Bankfull Max Depth (ft) Bankfull Max Depth (ft) Bankfull Max Depth (ft)	Cro Base 2743.9 8.6 63.0 0.7 1.1 5.9 12.4 7.3 1.0 Cro Base 2713.5 2713.5 13.3 0.9 12.6	7.0 P. 12.1 P.	ion 7, U MY2 2743.5 2743.9 5.1 83.7 1.2 1.7 5.9 4.4 16.4 1.3 ion 10, MY2 2713.8 2713.5 12.8 1.0 2.2 12.6	MY3	MY5	MY7	Base 2725.7 11.3 0.6 1.4 7.1 Cro Base 2712.9 2712.9 9.0 96.0 0.8 1.3 7.8	oss-Sec MY1 2725.7 2725.7 8.2 0.5 0.8 4.4 ss-Sect MY1 2712.9 2712.9 2712.9 12.6 96.0 0.5	tion 8, MY2 2726.2 2726.0 10.2 0.7 1.2 7.1 ion 11, MY2 2713.0 2712.9 10.1 85.3 1.5 7.8	MY3	MY5	MY7	## Base 2725.3 2725.3 7.7 97.0 0.5 1.1 4.1 14.7 12.5	MY1 2725.3 2725.3 6.5 97.0 0.7 1.1 4.2 9.9 15.0	MY2 2725.4 2725.3 7.1 80.2 0.6 1.1 4.1 12.2 11.3			

¹ Prior to MY2, bankfull dimensions were calculated using a fixed bankfull elevation. For MY2 through MY7, bankfull elevation and channel cross-section dimensions are calculated using a fixed Abkf as described in the Standard Measurement of the BHR Monitoring Parameter document provided by NCIRT and NCDMS (9/2018).

Table 12a. Monitoring - Stream Reach Data Summary

Vile Creek Mitigation Site DMS Project No. 96582 Monitoring Year 2 - 2018

Vile Creek, Reach 1 and Reach 2

Parameter		As-Built/	Baseline			М	Y1			MY2				
	Vile R	each 1	Vile R	each 2	Vile R	each 1	Vile R	each 2	Vile R	each 1	Vile R	each 2		
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max		
Dimension and Substrate - Riffle														
Bankfull Width (ft)	17.1	18.8	18.7	19.2	17.6	17.9	19.4	19.8	13.2	16.3	17.5	20.1		
Floodprone Width (ft)	>2	.00	156	188	>2	200	156.0	188.0	>2	200	88.6	96.9		
Bankfull Mean Depth	1.1	1.2	1.2	1.5	1.2	1.3	1.2	1.5	1.2	1.6	1.1	1.6		
Bankfull Max Depth	1.9	2.1	2.0	2.3	2.2	2.3	2.3	2.5	2.3	2.4	2.2	2.5		
Bankfull Cross Sectional Area (ft ²)	19.8	21.2	22.5	28.6	20.9	22.7	23.1	29.7	19.8	21.2	22.5	28.6		
Width/Depth Ratio	13.7	17.8	12.9	15.5	13.7	15.3	13.2	16.3	8.2	13.5	10.7	18.0		
Entrenchment Ratio	>2	2.2	>2	2.2	>:	2.2	>2	2.2	>6.0	10.9	4.5	5.1		
Bank Height Ratio	1.0	1.1	1	.0	1	.0	1	.0	1.1	1.3	1.0	1.1		
D50 (mm)	60.4	69.3	58.6	61.5	82.0	101.2	70.9	78.5	77.8	92.3	78.1	93.6		
Profile														
Riffle Length (ft)	19.7	74.1	18.3	94.1										
Riffle Slope (ft/ft)	0.0164	0.0420	0.0187	0.0385										
Pool Length (ft)	38.8	149.3	47.1	123.7										
Pool Max Depth (ft)	3.1	4.4	3.4	5.5										
Pool Spacing (ft)	55	161	87	172										
Pool Volume (ft ³)	-		•											
Pattern														
Channel Beltwidth (ft)	34	127	48	88										
Radius of Curvature (ft)	34	50	38	76										
Rc:Bankfull Width (ft/ft)	1.8	2.9	2.0	4.1										
Meander Wave Length (ft)	125	214	177	235										
Meander Width Ratio	2	7	3	5										
Additional Reach Parameters														
Rosgen Classification	(С		С										
Channel Thalweg Length (ft)	88	32	1,3	311										
Sinuosity (ft)	1.	21	1.	26										
Water Surface Slope (ft/ft)	0.0	135	0.0	122										
Bankfull Slope (ft/ft)	0.0	145	0.0	122										
Ri%/Ru%/P%/G%/S%														
SC%/Sa%/G%/C%/B%/Be%														
d16/d35/d50/d84/d95/d100														
% of Reach with Eroding Banks					C	1%	0	%	<:	1%	<1	.%		

Table 12b. Monitoring - Stream Reach Data Summary

Vile Creek Mitigation Site DMS Project No. 96582 Monitoring Year 2 - 2018

UT1 Reach 1 and Reach 2

Parameter		As-Built,	Baseline			M	Y1		MY2					
	UT1 R	each 1	UT1 R	each 2	UT1 R	teach 1	UT1 R	teach 2	UT1 R	Reach 1	UT1 R	each 2		
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max		
Dimension and Substrate - Riffle														
Bankfull Width (ft)	7.7	8.6		.0	6.5	8.1		2.6	5.1	7.1	10			
Floodprone Width (ft)	63	91		96	63.0	82.4	9	6.0	80.2	83.7	85	.3		
Bankfull Mean Depth	0.5	0.7	0.8		0.7	1.2	0.5		0.6	1.2	1.			
Bankfull Max Depth	1.1	1.1	1.3		1.1	2.2		4	1.1	1.7	1.			
Bankfull Cross Sectional Area (ft ²)	4.1	5.9	7	.8	4.2	9.4	6	5.5	4.1	5.9	7.	8		
Width/Depth Ratio	12.4	14.7		1.4	7.0	9.9		4.5	4.4	12.2	13			
Entrenchment Ratio	>2	2.2	>2.2		>:	2.2	>:	2.2	11.3	16.4	8.	5		
Bank Height Ratio	1.0	1.0	1	.0	1	0	1.0		0.9	1.3	0.	9		
D50 (mm)	22.6	34.3	28	3.1	29.8	48.3	5	8.6	45	78.1	72	.7		
Profile														
Shallow Length (ft)	11.0	53.1	13.5	60.7										
Shallow Slope (ft/ft)	0.0149	0.0410	0.0176	0.0897										
Pool Length (ft)	13.0	36.9	8.6	42.5										
Pool Max Depth (ft)	0.8	2.6	1.1	2.5										
Pool Spacing (ft)	7	59	38	88										
Pool Volume (ft ³)	-		Ī											
Pattern														
Channel Beltwidth (ft)	N,	/A ¹	6	66										
Radius of Curvature (ft)	N,	/A ¹	18	59										
Rc:Bankfull Width (ft/ft)	N,	/A ¹	2.0	6.5										
Meander Wave Length (ft)	N,	/A ¹	56	152										
Meander Width Ratio	N,	/A ¹	1	7										
Additional Reach Parameters														
Rosgen Classification		В		В										
Channel Thalweg Length (ft)	1,1	114	8	54										
Sinuosity (ft)	1	.2	1	.1										
Water Surface Slope (ft/ft)	0.0	264	0.0	288										
Bankfull Slope (ft/ft)	0.0	261	0.0	284										
Ri%/Ru%/P%/G%/S%														
SC%/Sa%/G%/C%/B%/Be%														
d16/d35/d50/d84/d95/d100														
% of Reach with Eroding Banks					C)%	C)%	<	1%	<1	%		

N/A: Not Applicable

Vile Creek Mitigation Site DMS Project No. 96582

Monitoring Year 2 - 2018

Cross-section 1 - Vile Creek Reach 1

Bankfull Dimensions

29.2 x-section area (ft.sq.)

26.1 width (ft)

1.1 mean depth (ft)

2.7 max depth (ft)

28.0 wetted perimeter (ft)

1.0 hydraulic radius (ft)

23.3 width-depth ratio

Survey Date: 04/2018

View Downstream

Vile Creek Mitigation Site DMS Project No. 96582

Monitoring Year 2 - 2018

Cross-section 2 - Vile Creek Reach 1

Bankfull Dimensions

- 21.2 x-section area (ft.sq.)
- 13.2 width (ft)
- 1.6 mean depth (ft)
- 2.3 max depth (ft)
- 15.1 wetted perimeter (ft)
- 1.4 hydraulic radius (ft)
- 8.2 width-depth ratio
- 143.9 W flood prone area (ft)
- 10.9 entrenchment ratio
- 1.3 low bank height ratio

Survey Date: 04/2018

View Downstream

Vile Creek Mitigation Site DMS Project No. 96582

Monitoring Year 2 - 2018

Cross-section 3 - Vile Creek Reach 1

Bankfull Dimensions

19.8 x-section area (ft.sq.)

16.3 width (ft)

1.2 mean depth (ft)

2.4 max depth (ft)

17.6 wetted perimeter (ft)

1.1 hydraulic radius (ft)

13.5 width-depth ratio

108.6 W flood prone area (ft)

6.6 entrenchment ratio

1.1 low bank height ratio

Survey Date: 04/2018

View Downstream

Vile Creek Mitigation Site DMS Project No. 96582

Monitoring Year 2 - 2018

Cross-section 4 - Vile Creek Reach 2

Bankfull Dimensions

- 22.5 x-section area (ft.sq.)
- 20.1 width (ft)
- 1.1 mean depth (ft)
- 2.2 max depth (ft)
- 21.0 wetted perimeter (ft)
- 1.1 hydraulic radius (ft)
- 18.0 width-depth ratio
- 88.6 W flood prone area (ft)
- 4.4 entrenchment ratio
- 1.0 low bank height ratio

Survey Date: 04/2018

View Downstream

Vile Creek Mitigation Site DMS Project No. 96582

Monitoring Year 2 - 2018

Cross-section 5 - Vile Creek Reach 2

Bankfull Dimensions

28.6 x-section area (ft.sq.)

17.5 width (ft)

1.6 mean depth (ft)

2.5 max depth (ft)

18.7 wetted perimeter (ft)

1.5 hydraulic radius (ft)

10.7 width-depth ratio

96.9 W flood prone area (ft)

5.5 entrenchment ratio

1.1 low bank height ratio

Survey Date: 04/2018

View Downstream

Vile Creek Mitigation Site DMS Project No. 96582

Monitoring Year 2 - 2018

Cross-section 6 - Vile Creek Reach 2

Bankfull Dimensions

44.3 x-section area (ft.sq.)

26.5 width (ft)

1.7 mean depth (ft)

3.9 max depth (ft)

28.5 wetted perimeter (ft)

1.6 hydraulic radius (ft)

15.9 width-depth ratio

Survey Date: 04/2018

View Downstream

Vile Creek Mitigation Site DMS Project No. 96582

Monitoring Year 2 - 2018

Cross-section 7 - UT1 Reach 1

Bankfull Dimensions

- 5.9 x-section area (ft.sq.)
- 5.1 width (ft)
- 1.2 mean depth (ft)
- 1.7 max depth (ft)
- 6.9 wetted perimeter (ft)
- 0.9 hydraulic radius (ft)
- 4.4 width-depth ratio
- 83.7 W flood prone area (ft)
- 16.4 entrenchment ratio
- 1.3 low bank height ratio

Survey Date: 04/2018

View Downstream

Vile Creek Mitigation Site DMS Project No. 96582

Monitoring Year 2 - 2018

Cross-section 8 - UT1 Reach 1

Bankfull Dimensions

7.1 x-section area (ft.sq.)

10.2 width (ft)

0.7 mean depth (ft)

1.2 max depth (ft)

10.8 wetted perimeter (ft)

0.7 hydraulic radius (ft)

14.6 width-depth ratio

Survey Date: 04/2018

View Downstream

Cross-section Plots

Vile Creek Mitigation Site DMS Project No. 96582

Monitoring Year 2 - 2018

Cross-section 9 - UT1 Reach 1

Bankfull Dimensions

- 4.1 x-section area (ft.sq.)
- 7.1 width (ft)
- 0.6 mean depth (ft)
- 1.1 max depth (ft)
- 7.7 wetted perimeter (ft)
- 0.5 hydraulic radius (ft)
- 12.2 width-depth ratio
- 80.2 W flood prone area (ft)
- 11.3 entrenchment ratio
- 0.9 low bank height ratio

Survey Date: 04/2018

Field Crew: Wildlands Engineering

View Downstream

Cross-section Plots

Vile Creek Mitigation Site DMS Project No. 96582

Monitoring Year 2 - 2018

Cross-section 10 - UT1 Reach 2

Bankfull Dimensions

- 12.6 x-section area (ft.sq.)
- 12.8 width (ft)
- 1.0 mean depth (ft)
- 2.2 max depth (ft)
- 14.0 wetted perimeter (ft)
- 0.9 hydraulic radius (ft)
- 13.0 width-depth ratio

Survey Date: 04/2018

Field Crew: Wildlands Engineering

View Downstream

Cross-section Plots

Vile Creek Mitigation Site DMS Project No. 96582

Monitoring Year 2 - 2018

Cross-section 11 - UT1 Reach 2

Bankfull Dimensions

- 7.8 x-section area (ft.sq.)
- 10.1 width (ft)
- 0.8 mean depth (ft)
- 1.5 max depth (ft)
- 10.9 wetted perimeter (ft)
- 0.7 hydraulic radius (ft)
- 13.0 width-depth ratio
- 85.3 W flood prone area (ft)
- 8.5 entrenchment ratio
- 0.9 low bank height ratio

Survey Date: 04/2018

Field Crew: Wildlands Engineering

View Downstream

Vile Creek Restoration Site DMS Project No. 96582

Monitoring Year 2 - 2018

Vile Creek Reach 1, Reachwide

cle Class Silt/Clay Very fine Fine Medium	min 0.000 0.062 0.125	max 0.062 0.125	Riffle	Pool	Total	Class Percentage	Percent Cumulative
Very fine Fine	0.062		1			. crecinage	cumulative
Fine		0.125		4	5	5	5
_	0.125		1	1	2	2	7
Medium	0.123	0.250	1	4	5	5	12
IVICUIUIII	0.25	0.50	1	7	8	8	20
Coarse	0.5	1.0	1	4	5	5	25
Very Coarse	1.0	2.0	2	12	14	14	39
Very Fine	2.0	2.8					39
Very Fine	2.8	4.0					39
Fine	4.0	5.6					39
Fine	5.6	8.0		1	1	1	40
Medium	8.0	11.0		1	1	1	41
Medium	11.0	16.0	1	1	2	2	43
Coarse	16.0	22.6	1	2	3	3	46
Coarse	22.6	32	1	1	2	2	48
Very Coarse	32	45	2	1	3	3	51
Very Coarse	45	64	7	5	12	12	63
Small	64	90	7	3	10	10	73
Small	90	128	10	1	11	11	84
Large	128	180	10	2	12	12	96
Large	180	256	1		1	1	97
Small	256	362	2		2	2	99
Small	362	512	1		1	1	100
Medium	512	1024					100
Large/Very Large	1024	2048					100
Bedrock	2048	>2048					100
	Very Fine Very Fine Fine Fine Medium Medium Coarse Coarse Very Coarse Very Coarse Small Large Large Small Small Large Large Small Medium Medium Large/Very Large	Very Fine 2.0 Very Fine 2.8 Fine 4.0 Fine 5.6 Medium 8.0 Medium 11.0 Coarse 16.0 Coarse 22.6 Very Coarse 32 Very Coarse 45 Small 64 Small 90 Large 128 Large 180 Small 256 Small 362 Medium 512 Large/Very Large 1024	Very Fine 2.0 2.8 Very Fine 2.8 4.0 Fine 4.0 5.6 Fine 5.6 8.0 Medium 8.0 11.0 Medium 11.0 16.0 Coarse 16.0 22.6 Coarse 22.6 32 Very Coarse 45 64 Small 64 90 Small 90 128 Large 128 180 Large 180 256 Small 256 362 Small 362 512 Medium 512 1024 Large/Very Large 1024 2048	Very Fine 2.0 2.8 Very Fine 2.8 4.0 Fine 4.0 5.6 Fine 5.6 8.0 Medium 8.0 11.0 Medium 11.0 16.0 1 Coarse 16.0 22.6 1 Coarse 22.6 32 1 Very Coarse 45 64 7 Small 64 90 7 Small 90 128 10 Large 128 180 10 Large 180 256 1 Small 256 362 2 Small 362 512 1 Medium 512 1024 Large/Very Large 1024 2048 Bedrock 2048 >2048	Very Fine 2.0 2.8 Very Fine 2.8 4.0 Fine 4.0 5.6 Fine 5.6 8.0 1 Medium 8.0 11.0 1 Medium 11.0 16.0 1 1 Coarse 16.0 22.6 1 2 2 Coarse 22.6 32 1	Very Fine 2.0 2.8 Very Fine 2.8 4.0 Fine 4.0 5.6 Fine 5.6 8.0 1 1 Medium 8.0 11.0 1 1 1 Medium 11.0 16.0 1 1 2 3 2 2 3 1 1 2 2 3 1 1 2 2 3 2 2 3 1 1 2 2 3 2 2 3 1 1 2 2 3 2 2 3 1 1 2 2 3 2 4 2 3 3 1 1 2 2 3 2 4 5 4	Very Fine 2.0 2.8 .

Reachwide					
Channel materials (mm)					
D ₁₆ =	0.35				
D ₃₅ =	1.64				
D ₅₀ =	40.2				
D ₈₄ =	128.0				
D ₉₅ =	175.0				
D ₁₀₀ =	512.0				

Vile Creek Restoration Site DMS Project No. 96582

Monitoring Year 2 - 2018

Vile Creek Reach 1, Cross-section 2

		Diame	ter (mm)	Riffle 100-	Summary		
Par	ticle Class			Count	Class	Percent	
		min	max	Count	Percentage	Cumulative	
SILT/CLAY	Silt/Clay	0.000	0.062	1	2	2	
	Very fine	0.062	0.125			2	
	Fine	0.125	0.250			2	
SAND	Medium	0.25	0.50			2	
יכ	Coarse	0.5	1.0			2	
	Very Coarse	1.0	2.0	3	6	8	
	Very Fine	2.0	2.8			8	
	Very Fine	2.8	4.0			8	
	Fine	4.0	5.6			8	
	Fine	5.6	8.0	1	2	10	
JEL	Medium	8.0	11.0	1	2	12	
GRAVEL	Medium	11.0	16.0	1	2	14	
-	Coarse	16.0	22.6	4	8	22	
	Coarse	22.6	32	1	2	24	
	Very Coarse	32	45	2	4	28	
	Very Coarse	45	64	7	14	42	
	Small	64	90	7	14	56	
ale	Small	90	128	11	22	78	
COBBLE	Large	128	180	7	14	92	
-	Large	180	256	2	4	96	
	Small	256	362	1	2	98	
, golden	Small	362	512	1	2	100	
్టర్గా	Medium	512	1024			100	
v	Large/Very Large	1024	2048			100	
BEDROCK	Bedrock	2048	>2048			100	
			Total	50	100	100	

Cross-section 2						
Channel materials (mm)						
D ₁₆ =	17.44					
D ₃₅ =	53.67					
D ₅₀ =	77.8					
D ₈₄ =	148.1					
D ₉₅ =	234.4					
D ₁₀₀ =	512.0					

Vile Creek Restoration Site DMS Project No. 96582

Monitoring Year 2 - 2018

Vile Creek Reach 1, Cross-section 3

		Diame	ter (mm)	Riffle 100-	Summary	
Par	ticle Class			Count	Class	Percent
		min	max	Count	Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062	1	2	2
	Very fine	0.062	0.125			2
	Fine	0.125	0.250			2
SAND	Medium	0.25	0.50			2
,د	Coarse	0.5	1.0			2
	Very Coarse	1.0	2.0	3	6	8
	Very Fine	2.0	2.8			8
	Very Fine	2.8	4.0			8
	Fine	4.0	5.6			8
	Fine	5.6	8.0	1	2	10
367	Medium	8.0	11.0			10
GRAVEL	Medium	11.0	16.0			10
	Coarse	16.0	22.6	1	2	12
	Coarse	22.6	32	2	4	16
	Very Coarse	32	45	2	4	20
	Very Coarse	45	64	4	8	28
	Small	64	90	10	20	48
ale	Small	90	128	14	28	76
COBBLE	Large	128	180	6	12	88
	Large	180	256	5	10	98
	Small	256	362	1	2	100
and the second	Small	362	512			100
త్	Medium	512	1024			100
×	Large/Very Large	1024	2048			100
BEDROCK	Bedrock	2048	>2048			100
			Total	50	100	100

Cross-section 3						
Ch	Channel materials (mm)					
D ₁₆ =	32.00					
D ₃₅ =	72.11					
D ₅₀ =	92.3					
D ₈₄ =	160.7					
D ₉₅ =	230.3					
D ₁₀₀ =	362.0					

Vile Creek Restoration Site DMS Project No. 96582

Monitoring Year 2 - 2018

Vile Creek Reach 2, Reachwide

		Diame	ter (mm)	Pa	rticle Co	unt	Reach S	ummary
Par	ticle Class						Class	Percent
		min	max	Riffle	Pool	Total	Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062	1		1	2	2
	Very fine	0.062	0.125					2
	Fine	0.125	0.250					2
SAND	Medium	0.25	0.50	1		1	2	4
رد ا	Coarse	0.5	1.0					4
	Very Coarse	1.0	2.0	5		5	10	14
	Very Fine	2.0	2.8					14
	Very Fine	2.8	4.0					14
	Fine	4.0	5.6					14
	Fine	5.6	8.0					14
362	Medium	8.0	11.0	1		1	2	16
GRAVEL	Medium	11.0	16.0					16
_	Coarse	16.0	22.6	1		1	2	18
	Coarse	22.6	32	4		4	8	26
	Very Coarse	32	45	2		2	4	30
	Very Coarse	45	64	8		8	16	46
	Small	64	90	11		11	22	68
ale	Small	90	128	9		9	18	86
CORBLE	Large	128	180	4		4	8	94
	Large	180	256	1		1	2	96
	Small	256	362	1		1	2	98
80010EE	Small	362	512	1		1	2	100
رزي ا	Medium	512	1024					100
v	Large/Very Large	1024	2048				_	100
BEDROCK	Bedrock	2048	>2048					100
			Total	50	0	50	100	100

Reachwide					
Channel materials (mm)					
D ₁₆ =	11.00				
D ₃₅ =	50.24				
D ₅₀ =	68.1				
D ₈₄ =	123.1				
D ₉₅ =	214.7				
D ₁₀₀ =	512.0				

Vile Creek Restoration Site DMS Project No. 96582

Monitoring Year 2 - 2018

Vile Creek Reach 2, Cross-section 4

		Diame	ter (mm)	Riffle 100-	Sum	mary
Par	ticle Class			Count	Class	Percent
		min	max	Count	Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062			0
	Very fine	0.062	0.125			0
	Fine	0.125	0.250			0
SAND	Medium	0.25	0.50			0
٦,	Coarse	0.5	1.0			0
	Very Coarse	1.0	2.0	5	10	10
	Very Fine	2.0	2.8			10
	Very Fine	2.8	4.0			10
	Fine	4.0	5.6			10
	Fine	5.6	8.0			10
JEL	Medium	8.0	11.0	1	2	12
GRAVEL	Medium	11.0	16.0	1	2	14
-	Coarse	16.0	22.6	2	4	18
	Coarse	22.6	32	2	4	22
	Very Coarse	32	45	4	8	30
	Very Coarse	45	64	3	6	36
	Small	64	90	12	24	60
ale	Small	90	128	9	18	78
COBBLE	Large	128	180	9	18	96
-	Large	180	256	1	2	98
	Small	256	362	1	2	100
SON OF STREET	Small	362	512			100
్టర్గా	Medium	512	1024			100
77	Large/Very Large	1024	2048			100
BEDROCK	Bedrock	2048	>2048			100
			Total	50	100	100

Cross-section 4					
Channel materials (mm)					
D ₁₆ =	19.02				
D ₃₅ =	60.35				
D ₅₀ =	78.1				
D ₈₄ =	143.4				
D ₉₅ =	176.6				
D ₁₀₀ =	362.0				

Vile Creek Restoration Site DMS Project No. 96582

Monitoring Year 2 - 2018

Vile Creek Reach 2, Cross-section 5

		Diame	ter (mm)	Riffle 100-	Sum	mary
Par	ticle Class			Count	Class	Percent
		min	max	Count	Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062			0
	Very fine	0.062	0.125			0
	Fine	0.125	0.250	1	2	2
SAND	Medium	0.25	0.50			2
,د	Coarse	0.5	1.0	1	2	4
	Very Coarse	1.0	2.0	2	4	8
	Very Fine	2.0	2.8			8
	Very Fine	2.8	4.0			8
	Fine	4.0	5.6			8
	Fine	5.6	8.0			8
365	Medium	8.0	11.0	1	2	10
GRAVEL	Medium	11.0	16.0	1	2	12
_	Coarse	16.0	22.6	1	2	14
	Coarse	22.6	32	4	8	22
	Very Coarse	32	45	2	4	26
	Very Coarse	45	64	4	8	34
	Small	64	90	7	14	48
ale	Small	90	128	9	18	66
COBBLE	Large	128	180	7	14	80
-	Large	180	256	7	14	94
	Small	256	362	1	2	96
RONDER	Small	362	512	1	2	98
చ్చి	Medium	512	1024	1	2	100
. v	Large/Very Large	1024	2048			100
BEDROCK	Bedrock	2048	>2048			100
			Total	50	100	100

Cross-section 5						
Channel materials (mm)						
D ₁₆ =	24.65					
D ₃₅ =	65.58					
D ₅₀ =	93.6					
D ₈₄ =	199.1					
D ₉₅ =	304.4					
D ₁₀₀ =	1024.0					

Vile Creek Restoration Site DMS Project No. 96582

Monitoring Year 2 - 2018

UT1 Reach 1, Reachwide

		Diame	ter (mm)	Pa	rticle Co	unt	Reach Summary	
Par	ticle Class						Class	Percent
		min	max	Riffle	Pool	Total	Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062	1	7	8	8	8
	Very fine	0.062	0.125					8
	Fine	0.125	0.250					8
SAND	Medium	0.25	0.50	1	1	2	2	10
٦,	Coarse	0.5	1.0		3	3	3	13
	Very Coarse	1.0	2.0	3	11	14	14	27
	Very Fine	2.0	2.8					27
	Very Fine	2.8	4.0					27
	Fine	4.0	5.6					27
	Fine	5.6	8.0					27
367	Medium	8.0	11.0	2	1	3	3	30
GRAVEL	Medium	11.0	16.0		3	3	3	33
	Coarse	16.0	22.6	1	5	6	6	39
	Coarse	22.6	32	5	8	13	13	52
	Very Coarse	32	45	4	5	9	9	61
	Very Coarse	45	64	11	6	17	17	78
	Small	64	90	8		8	8	86
COBBLE	Small	90	128	9		9	9	95
COBL	Large	128	180	3		3	3	98
	Large	180	256	1		1	1	99
	Small	256	362	1		1	1	100
Ç.	Small	362	512			_		100
	Medium	512	1024					100
	Large/Very Large	1024	2048					100
BEDROCK	Bedrock	2048	>2048					100
			Total	50	50	100	100	100

Reachwide				
Channel materials (mm)				
D ₁₆ =	1.16			
D ₃₅ =	17.95			
D ₅₀ =	30.3			
D ₈₄ =	82.6			
D ₉₅ =	128.0			
D ₁₀₀ =	362.0			

Vile Creek Restoration Site DMS Project No. 96582

Monitoring Year 2 - 2018

UT1 Reach 1, Cross-section 7

Particle Class SILT/CLAY Silt/Clay		Diame	ter (mm)	Riffle 100-	Summary		
				Count	Class	Percent	
		min	max	Count	Percentage	Cumulative	
SILT/CLAY	Silt/Clay	0.000	0.062			0	
-	Very fine	0.062	0.125			0	
	Fine	0.125	0.250			0	
SAND	Medium	0.25	0.50			0	
٦,	Coarse	0.5	1.0			0	
	Very Coarse	1.0	2.0	7	14	14	
	Very Fine	2.0	2.8			14	
	Very Fine	2.8	4.0			14	
	Fine	4.0	5.6	1	2	16	
	Fine	5.6	8.0			16	
JEL	Medium	8.0	11.0			16	
GRAVEL	Medium	11.0	16.0			16	
-	Coarse	16.0	22.6	1	2	18	
	Coarse	22.6	32	1	2	20	
	Very Coarse	32	45	1	2	22	
	Very Coarse	45	64	7	14	36	
	Small	64	90	12	24	60	
ale	Small	90	128	13	26	86	
COBBLE	Large	128	180	7	14	100	
-	Large	180	256			100	
	Small	256	362			100	
.00	Small	362	512			100	
goldon.	Medium	512	1024			100	
	Large/Very Large	1024	2048	•	_	100	
BEDROCK	Bedrock	2048	>2048	-		100	
			Total	50	100	100	

Cross-section 7					
Ch	Channel materials (mm)				
D ₁₆ = 5.60					
D ₃₅ =	62.41				
D ₅₀ =	78.1				
D ₈₄ =	124.6				
D ₉₅ =	159.4				
D ₁₀₀ =	180.0				

Vile Creek Restoration Site DMS Project No. 96582

Monitoring Year 2 - 2018

UT1 Reach 1, Cross-section 9

		Diame	ter (mm)	Riffle 100-	Summary		
Par	ticle Class			Count	Class	Percent	
SILT/CLAY Silt/Clav		min	max	Count	Percentage	Cumulative	
SILT/CLAY	Silt/Clay	0.000	0.062	5	10	10	
	Very fine	0.062	0.125			10	
	Fine	0.125	0.250			10	
SAND	Medium	0.25	0.50	1	2	12	
'ל	Coarse	0.5	1.0			12	
	Very Coarse	1.0	2.0	5	10	22	
	Very Fine	2.0	2.8			22	
	Very Fine	2.8	4.0			22	
	Fine	4.0	5.6			22	
	Fine	5.6	8.0			22	
, etc	Medium	8.0	11.0	2	4	26	
GRAVEL	Medium	11.0	16.0	1	2	28	
-	Coarse	16.0	22.6	2	4	32	
	Coarse	22.6	32	2	4	36	
	Very Coarse	32	45	7	14	50	
	Very Coarse	45	64	8	16	66	
	Small	64	90	7	14	80	
ale	Small	90	128	6	12	92	
COBBLE	Large	128	180	3	6	98	
-	Large	180	256	1	2	100	
	Small	256	362			100	
SOULE BE	Small	362	512			100	
سروي	Medium	512	1024			100	
77	Large/Very Large	1024	2048			100	
BEDROCK	Bedrock	2048	>2048			100	
			Total	50	100	100	

Cross-section 9					
Ch	Channel materials (mm)				
D ₁₆ = 1.32					
D ₃₅ =	29.34				
D ₅₀ =	45.0				
D ₈₄ =	101.2				
D ₉₅ =	151.8				
D ₁₀₀ =	256.0				

Vile Creek Restoration Site DMS Project No. 96582

Monitoring Year 2 - 2018

UT1 Reach 2, Reachwide

		Diame	ter (mm)	Pai	rticle Co	unt	Reach Summary	
Par	ticle Class						Class	Percent
SUT/GLAY Silk/Class		min	max	Riffle	Pool	Total	Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062	6	6	12	12	12
	Very fine	0.062	0.125					12
	Fine	0.125	0.250					12
SAND	Medium	0.25	0.50		8	8	8	20
٦,	Coarse	0.5	1.0					20
	Very Coarse	1.0	2.0	6	13	19	19	39
	Very Fine	2.0	2.8					39
	Very Fine	2.8	4.0					39
	Fine	4.0	5.6					39
	Fine	5.6	8.0		1	1	1	40
GRAVEL	Medium	8.0	11.0		1	1	1	41
GRA.	Medium	11.0	16.0		3	3	3	44
•	Coarse	16.0	22.6	1	8	9	9	53
	Coarse	22.6	32	7	5	12	12	65
	Very Coarse	32	45	7	3	10	10	75
	Very Coarse	45	64	12	2	14	14	89
	Small	64	90	9		9	9	98
ale	Small	90	128	1		1	1	99
COBBLE	Large	128	180	1		1	1	100
-	Large	180	256					100
	Small	256	362					100
.08	Small	362	512					100
gollates	Medium	512	1024					100
	Large/Very Large	1024	2048					100
BEDROCK	Bedrock	2048	>2048					100
	Total				50	100	100	100

Reachwide				
Channel materials (mm)				
D ₁₆ =	0.35			
D ₃₅ =	1.73			
D ₅₀ =	20.1			
D ₈₄ =	56.4			
D ₉₅ =	80.3			
D ₁₀₀ =	180.0			

Vile Creek Restoration Site DMS Project No. 96582

Monitoring Year 2 - 2018

UT1 Reach 2, Cross-section 11

		Diame	ter (mm)	Riffle 100-	Summary		
Par	ticle Class			Count	Class	Percent	
SILT/CLAY Silt/Clay		min	max	Count	Percentage	Cumulative	
SILT/CLAY	Silt/Clay	0.000	0.062			0	
-	Very fine	0.062	0.125	1	2	2	
	Fine	0.125	0.250			2	
SAND	Medium	0.25	0.50	1	2	4	
٦'	Coarse	0.5	1.0			4	
	Very Coarse	1.0	2.0	5	10	14	
	Very Fine	2.0	2.8			14	
	Very Fine	2.8	4.0			14	
	Fine	4.0	5.6			14	
	Fine	5.6	8.0			14	
-36	Medium	8.0	11.0			14	
GRAVEL	Medium	11.0	16.0			14	
	Coarse	16.0	22.6	3	6	20	
	Coarse	22.6	32	3	6	26	
	Very Coarse	32	45	3	6	32	
	Very Coarse	45	64	6	12	44	
	Small	64	90	8	16	60	
ale	Small	90	128	9	18	78	
COBBLE	Large	128	180	9	18	96	
	Large	180	256	2	4	100	
	Small	256	362			100	
eonope Ones	Small	362	512			100	
	Medium	512	1024			100	
	Large/Very Large	1024	2048			100	
BEDROCK	Bedrock	2048	>2048	-		100	
			Total	50	100	100	

Cross-section 11					
Ch	Channel materials (mm)				
D ₁₆ = 17.95					
D ₃₅ =	49.14				
D ₅₀ =	72.7				
D ₈₄ =	143.4				
D ₉₅ =	176.6				
D ₁₀₀ =	256.0				

Table 13. Verification of Bankfull Events

Vile Creek Mitigation Site DMS Project No. 96582 **Monitoring Year 2 - 2018**

Reach	Monitoring Year	Date of Occurrence	Method	
		3/31/2017		
	MY1	4/24/2017		
Vile Reach 2		10/8/2017		
	MY2	9/16/2018	Stroom Cogo	
	IVITZ	10/11/2018	Stream Gage	
UT1 Reach 2	MY1	5/5/2017		
	IVIT	10/8/2017]	
	MY2	10/11/2018		

Table 14. Wetland Gage Attainment Summary

Vile Creek Mitigation Site DMS Project No. 96582 **Monitoring Year 2 - 2018**

	Summary of Groundwater Gage Results for Monitoring Years 1 through 7								
Gage		ess Criteria Ach	ieved/Max Con	secutive Days D	uring Growing S	eason (Percenta	ige)		
Gage	Year 1 (2017)	Year 2 (2018)	Year 3 (2019)	Year 4 (2020)	Year 5 (2021)	Year 6 (2022)	Year 7 (2023)		
1*	Yes/169 Days (100%)	Yes/169 Days (100%)							
2	Yes/ 129 Days (77%)	Yes/33 Days (20%)							
3	Yes/169 Days (100%)	Yes/73 Days (43%)							
4	Yes/169 Days (100%)	Yes/169 Days (100%)							
5	Yes/169 Days (100%)	Yes/169 Days (100%)							
6	Yes/169 Days (100%)	Yes/169 Days (100%)							
7	Yes/ 129 Days (77%)	Yes/33 Days (20%)							
8	Yes/125 Days (74%)	Yes/14 Days (8%)							
9	Yes/40 Days (24%)	Yes/33 Days (20%)							
10*	Yes/169 Days (100%)	Yes/169 Days (100%)							

^{*}Gages are located in bog habitat.

Growing season is April 26th -October 11th.

Success criteria is 14 days.

Vile Creek Mitigation Site DMS Project No. 96582 **Monitoring Year 2 - 2018** Wetland Bog Rehabilitation

Vile Creek Mitigation Site DMS Project No. 96582 **Monitoring Year 2 - 2018** Wetland Bog Rehabilitation

Recorded Stream Gage Events

Vile Creek Mitigation Site DMS Project No. 96582 Monitoring Year 2 - 2018

Recorded Stream Gage Events

Vile Creek Mitigation Site DMS Project No. 96582 Monitoring Year 2 - 2018

Monthly Rainfall Data

Vile Creek Mitigation Site DMS Project No. 96582 Monitoring Year 2 - 2018

 $^{^{\}rm 1}$ 2017 rainfall collected by on-site rainfall gage and NC Cronos Station NC-AG-5

 $^{^{2}}$ 30th and 70th percentile rainfall data collected from WETS station Transou, Ashe County, NC

³ On-site rainfall gage malfunctioned Jan-April 2017.